IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v139y2021ics136403212100006x.html
   My bibliography  Save this article

Polymer electrolyte electrolysis: A review of the activity and stability of non-precious metal hydrogen evolution reaction and oxygen evolution reaction catalysts

Author

Listed:
  • Hughes, J.P.
  • Clipsham, J.
  • Chavushoglu, H.
  • Rowley-Neale, S.J.
  • Banks, C.E.

Abstract

The potential for generating green hydrogen by electrolysis (water splitting) has resulted in a substantial amount of literature focusing on lowering the current production cost of hydrogen. A significant contributor to this high cost is the requirement for precious metals (namely Pt and Ir/Ru (oxides)) to catalyse the two main reactions involved in electrolysis: the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Herein we overview the current literature of non-precious metal HER and OER catalysts capable of efficient water splitting within a polymer electrolyte membrane (PEM) electrolyser, recording the activity and stability of each catalyst and allowing for direct comparison to be made. Additionally, we highlight the inapplicability of catalyst stability testing in many academic studies for commercial electrolyser applications and propose a universal stability-testing regime for HER and OER catalysts that more accurately mimics the conditions within an operating electrolyser.

Suggested Citation

  • Hughes, J.P. & Clipsham, J. & Chavushoglu, H. & Rowley-Neale, S.J. & Banks, C.E., 2021. "Polymer electrolyte electrolysis: A review of the activity and stability of non-precious metal hydrogen evolution reaction and oxygen evolution reaction catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:rensus:v:139:y:2021:i:c:s136403212100006x
    DOI: 10.1016/j.rser.2021.110709
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212100006X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siracusano, S. & Van Dijk, N. & Backhouse, R. & Merlo, L. & Baglio, V. & Aricò, A.S., 2018. "Degradation issues of PEM electrolysis MEAs," Renewable Energy, Elsevier, vol. 123(C), pages 52-57.
    2. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    3. Bareiß, Kay & de la Rua, Cristina & Möckl, Maximilian & Hamacher, Thomas, 2019. "Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems," Applied Energy, Elsevier, vol. 237(C), pages 862-872.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taehyung Koo & Rockkil Ko & Dongwoo Ha & Jaeyoung Han, 2023. "Development of Model-Based PEM Water Electrolysis HILS (Hardware-in-the-Loop Simulation) System for State Evaluation and Fault Detection," Energies, MDPI, vol. 16(8), pages 1-18, April.
    2. João Brito & João Restivo & Juliana P. S. Sousa & Natalia C. M. Spera & D. S. Falcão & Amadeu Rocha & A. M. F. R. Pinto & Manuel Fernando R. Pereira & Olívia Salomé G. P. Soares, 2022. "Implementation of Transition Metal Phosphides as Pt-Free Catalysts for PEM Water Electrolysis," Energies, MDPI, vol. 15(5), pages 1-18, March.
    3. Ortiz, C. & García-Luna, S. & Carro, A. & Chacartegui, R. & Pérez-Maqueda, L., 2023. "Negative emissions power plant based on flexible calcium-looping process integrated with renewables and methane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Srivastava, Nitish & Saquib, Mohammad & Rajput, Pramod & Bhosale, Amit C. & Singh, Rhythm & Arora, Pratham, 2023. "Prospects of solar-powered nitrogenous fertilizers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    5. Kumar, S. Shiva & Ni, Aleksey & Himabindu, V. & Lim, Hankwon, 2023. "Experimental and simulation of PEM water electrolyser with Pd/PN-CNPs electrodes for hydrogen evolution reaction: Performance assessment and validation," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).
    2. Alviani, Vani Novita & Hirano, Nobuo & Watanabe, Noriaki & Oba, Masahiro & Uno, Masaoki & Tsuchiya, Noriyoshi, 2021. "Local initiative hydrogen production by utilization of aluminum waste materials and natural acidic hot-spring water," Applied Energy, Elsevier, vol. 293(C).
    3. Navas-Anguita, Zaira & García-Gusano, Diego & Dufour, Javier & Iribarren, Diego, 2020. "Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport," Applied Energy, Elsevier, vol. 259(C).
    4. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    5. Seck, Gondia Sokhna & Hache, Emmanuel & D'Herbemont, Vincent & Guyot, Mathis & Malbec, Louis-Marie, 2023. "Hydrogen development in Europe: Estimating material consumption in net zero emissions scenarios," International Economics, Elsevier, vol. 176(C).
    6. Negar Shaya & Simon Glöser-Chahoud, 2024. "A Review of Life Cycle Assessment (LCA) Studies for Hydrogen Production Technologies through Water Electrolysis: Recent Advances," Energies, MDPI, vol. 17(16), pages 1-21, August.
    7. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    8. Samuel Simon Araya & Fan Zhou & Simon Lennart Sahlin & Sobi Thomas & Christian Jeppesen & Søren Knudsen Kær, 2019. "Fault Characterization of a Proton Exchange Membrane Fuel Cell Stack," Energies, MDPI, vol. 12(1), pages 1-17, January.
    9. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    10. Freida Ozavize Ayodele & Siti Indati Mustapa & Bamidele Victor Ayodele & Norsyahida Mohammad, 2020. "An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    11. Hegazy Rezk & Mokhtar Aly & Rania M. Ghoniem, 2023. "Robust Fuzzy Logic MPPT Using Gradient-Based Optimization for PEMFC Power System," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    12. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    13. Tamura, Masato & Gotou, Takahiro & Ishii, Hiroki & Riechelmann, Dirk, 2020. "Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace," Applied Energy, Elsevier, vol. 277(C).
    14. Pavlos Nikolaidis & Andreas Poullikkas, 2022. "A Thorough Emission-Cost Analysis of the Gradual Replacement of Carbon-Rich Fuels with Carbon-Free Energy Carriers in Modern Power Plants: The Case of Cyprus," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    15. Wang, Qiuying & Zhu, Xiaomei & Sun, Bing & Li, Zhi & Liu, Jinglin, 2022. "Hydrogen production from methane via liquid phase microwave plasma: A deoxidation strategy," Applied Energy, Elsevier, vol. 328(C).
    16. Bidart, Christian & Wichert, Martin & Kolb, Gunther & Held, Michael, 2022. "Biogas catalytic methanation for biomethane production as fuel in freight transport - A carbon footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Olfa Tlili & Christine Mansilla & David Frimat & Yannick Perez, 2019. "Hydrogen market penetration feasibility assessment: Mobility and natural gas markets in the US, Europe, China and Japan," Post-Print hal-02265824, HAL.
    18. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Toledo, Mario & Arriagada, Andrés & Ripoll, Nicolás & Salgansky, Eugene A. & Mujeebu, Muhammad Abdul, 2023. "Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    20. Graciela M. L. Ruiz-Aguilar & Hector G. Nuñez-Palenius & Nanh Lovanh & Sarai Camarena-Martínez, 2022. "Comparative Study of Methane Production in a One-Stage vs. Two-Stage Anaerobic Digestion Process from Raw Tomato Plant Waste," Energies, MDPI, vol. 15(23), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:139:y:2021:i:c:s136403212100006x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.