IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08525-2.html
   My bibliography  Save this article

Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites

Author

Listed:
  • Xiang Yu

    (Université Lille, CNRS, Centrale Lille, ENSCL, Université Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide)

  • Vincent Waele

    (Université Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman)

  • Axel Löfberg

    (Université Lille, CNRS, Centrale Lille, ENSCL, Université Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide)

  • Vitaly Ordomsky

    (Université Lille, CNRS, Centrale Lille, ENSCL, Université Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide
    Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464, CNRS-Solvay)

  • Andrei Y. Khodakov

    (Université Lille, CNRS, Centrale Lille, ENSCL, Université Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide)

Abstract

Chemical utilization of vast fossil and renewable feedstocks of methane remains one of the most important challenges of modern chemistry. Herein, we report direct and selective methane photocatalytic oxidation at ambient conditions into carbon monoxide, which is an important chemical intermediate and a platform molecule. The composite catalysts on the basis of zinc, tungstophosphoric acid and titania exhibit exceptional performance in this reaction, high carbon monoxide selectivity and quantum efficiency of 7.1% at 362 nm. In-situ Fourier transform infrared and X-ray photoelectron spectroscopy suggest that the catalytic performance can be attributed to zinc species highly dispersed on tungstophosphoric acid /titania, which undergo reduction and oxidation cycles during the reaction according to the Mars–van Krevelen sequence. The reaction proceeds via intermediate formation of surface methyl carbonates.

Suggested Citation

  • Xiang Yu & Vincent Waele & Axel Löfberg & Vitaly Ordomsky & Andrei Y. Khodakov, 2019. "Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08525-2
    DOI: 10.1038/s41467-019-08525-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08525-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08525-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Le & Lin, Hongju & Fang, Zhihao & Yang, Yanhui & Liu, Xiaohao & Ouyang, Gangfeng, 2023. "Recent advances on methane partial oxidation toward oxygenates under mild conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Chao Wang & Youxun Xu & Lunqiao Xiong & Xiyi Li & Enqi Chen & Tina Jingyan Miao & Tianyu Zhang & Yang Lan & Junwang Tang, 2024. "Selective oxidation of methane to C2+ products over Au-CeO2 by photon-phonon co-driven catalysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Wenqing Zhang & Dawei Xi & Yihong Chen & Aobo Chen & Yawen Jiang & Hengjie Liu & Zeyu Zhou & Hui Zhang & Zhi Liu & Ran Long & Yujie Xiong, 2023. "Light-driven flow synthesis of acetic acid from methane with chemical looping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Wenqing Zhang & Cenfeng Fu & Jingxiang Low & Delong Duan & Jun Ma & Wenbin Jiang & Yihong Chen & Hengjie Liu & Zeming Qi & Ran Long & Yingfang Yao & Xiaobao Li & Hui Zhang & Zhi Liu & Jinlong Yang & Z, 2022. "High-performance photocatalytic nonoxidative conversion of methane to ethane and hydrogen by heteroatoms-engineered TiO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08525-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.