IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v275y2020ics0306261920308965.html
   My bibliography  Save this article

Numerical investigation of the natural gas hydrate production tests in the Nankai Trough by incorporating sand migration

Author

Listed:
  • Zhu, Huixing
  • Xu, Tianfu
  • Yuan, Yilong
  • Xia, Yingli
  • Xin, Xin

Abstract

A large number of data on gas production and reservoir characteristics were released after the 2013 and 2017 offshore natural gas hydrate production tests in the Eastern Nankai Trough of Japan. However, the systematic comparison of the two production tests is still limited. Therefore, in this study, we first reviewed the gas and water production processes of the three production boreholes in the two production tests. Some problems were found by comparing the gas and water production rates of each production well and with the existing numerical simulation results. For instance, the gas production rate of well AT1-P3 was extremely low and, distinguished with the previous simulation results, the gas production rates of wells AT1-P and AT1-P3 didn’t increase with time. Considering the severe sand production in these two wells, we speculated that the plugging of sand control device (SCD) caused by solid particles deposition was the cause of the above problems. Thus, for the first time, numerical simulation considering the sand production and SCD plugging was performed to evaluate the gas and water production performance of the three production wells. In addition, a preliminary analysis of the production efficiency of each well was carried out. The simulation results showed that a serious plugging occurred at well AT1-P3, which is responsible for its low gas production. In contrast, well AT1-P had a slight plugging, and well AT1-P2 avoided severe sand production owing to the reduced pressure drop, and obtained much higher gas production rate than well AT1-P3 with a lower pressure drop. Furthermore, the simulation results indicated that economically viable gas production is difficult to achieve with current production strategies even if the problems of sand production and SCD plugging are solved. This requires the use of some emerging production technologies in the future.

Suggested Citation

  • Zhu, Huixing & Xu, Tianfu & Yuan, Yilong & Xia, Yingli & Xin, Xin, 2020. "Numerical investigation of the natural gas hydrate production tests in the Nankai Trough by incorporating sand migration," Applied Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308965
    DOI: 10.1016/j.apenergy.2020.115384
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920308965
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Zhenyuan & Moridis, George & Linga, Praveen, 2019. "On the importance of phase saturation heterogeneity in the analysis of laboratory studies of hydrate dissociation," Applied Energy, Elsevier, vol. 255(C).
    2. Machiko Tamaki & Tetsuya Fujii & Kiyofumi Suzuki, 2017. "Characterization and Prediction of the Gas Hydrate Reservoir at the Second Offshore Gas Production Test Site in the Eastern Nankai Trough, Japan," Energies, MDPI, vol. 10(10), pages 1-13, October.
    3. Huang, Li & Su, Zheng & Wu, Neng-You, 2015. "Evaluation on the gas production potential of different lithological hydrate accumulations in marine environment," Energy, Elsevier, vol. 91(C), pages 782-798.
    4. Yu, Lu & Zhang, Liang & Zhang, Rui & Ren, Shaoran, 2018. "Assessment of natural gas production from hydrate-bearing sediments with unconsolidated argillaceous siltstones via a controlled sandout method," Energy, Elsevier, vol. 160(C), pages 654-667.
    5. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    6. Li, Xiao-Sen & Li, Bo & Li, Gang & Yang, Bo, 2012. "Numerical simulation of gas production potential from permafrost hydrate deposits by huff and puff method in a single horizontal well in Qilian Mountain, Qinghai province," Energy, Elsevier, vol. 40(1), pages 59-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinze Song & Yuhao Li & Shuai Liu & Youming Xiong & Weixin Pang & Yufa He & Yaxi Mu, 2022. "Comparison of Machine Learning Algorithms for Sand Production Prediction: An Example for a Gas-Hydrate-Bearing Sand Case," Energies, MDPI, vol. 15(18), pages 1-32, September.
    2. Zhu, Huixing & Xu, Tianfu & Xin, Xin & Yuan, Yilong & Feng, Guanhong, 2022. "Numerical investigation of the three-phase layer production performance of an offshore natural gas hydrate trial production," Energy, Elsevier, vol. 257(C).
    3. Zhang, Yiqun & Zhang, Panpan & Hui, Chengyu & Tian, Shouceng & Zhang, Bo, 2023. "Numerical analysis of the geomechanical responses during natural gas hydrate production by multilateral wells," Energy, Elsevier, vol. 269(C).
    4. Zhong, Xiuping & Pan, Dongbin & Zhu, Ying & Wang, Yafei & Zhai, Lianghao & Li, Xitong & Tu, Guigang & Chen, Chen, 2021. "Fracture network stimulation effect on hydrate development by depressurization combined with thermal stimulation using injection-production well patterns," Energy, Elsevier, vol. 228(C).
    5. Dong, Shuang & Yang, Mingjun & Chen, Mingkun & Zheng, Jia-nan & Song, Yongchen, 2022. "Thermodynamics analysis and temperature response mechanism during methane hydrate production by depressurization," Energy, Elsevier, vol. 241(C).
    6. Zhang, Panpan & Zhang, Yiqun & Zhang, Wenhong & Tian, Shouceng, 2022. "Numerical simulation of gas production from natural gas hydrate deposits with multi-branch wells: Influence of reservoir properties," Energy, Elsevier, vol. 238(PA).
    7. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong & Song, Yongchen, 2021. "Numerical evaluation of free gas accumulation behavior in a reservoir during methane hydrate production using a multiple-well system," Energy, Elsevier, vol. 218(C).
    8. Dong, Shuang & Yang, Mingjun & Zhang, Lei & Zheng, Jia-nan & Song, Yongchen, 2023. "Methane hydrate exploitation characteristics and thermodynamic non-equilibrium mechanisms by long depressurization method," Energy, Elsevier, vol. 280(C).
    9. Jin, Guangrong & Peng, Yingyu & Liu, Lihua & Su, Zheng & Liu, Jie & Li, Tingting & Wu, Daidai, 2022. "Enhancement of gas production from low-permeability hydrate by radially branched horizontal well: Shenhu Area, South China Sea," Energy, Elsevier, vol. 253(C).
    10. Jin, Guangrong & Su, Zheng & Zhai, Haizhen & Feng, Chuangji & Liu, Jie & Peng, Yingyu & Liu, Lihua, 2023. "Enhancement of gas production from hydrate reservoir using a novel deployment of multilateral horizontal well," Energy, Elsevier, vol. 270(C).
    11. Yuan, Yilong & Gong, Ye & Xu, Tianfu & Zhu, Huixing, 2023. "Multiphase flow and geomechanical responses of interbedded hydrate reservoirs during depressurization gas production for deepwater environment," Energy, Elsevier, vol. 262(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Tao & Guan, Guoqing & Abudula, Abuliti, 2019. "Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Yoshida, Akihiro & Wang, Dayong & Song, Yongchen, 2019. "Gas recovery enhancement from methane hydrate reservoir in the Nankai Trough using vertical wells," Energy, Elsevier, vol. 166(C), pages 834-844.
    3. Zhao, Qi & Li, Xiao-Sen & Chen, Zhao-Yang & Xia, Zhi-Ming & Xiao, Chang-Wen, 2024. "Numerical investigation of production characteristics and interlayer interference during co-production of natural gas hydrate and shallow gas reservoir," Applied Energy, Elsevier, vol. 354(PA).
    4. Feng, Yongchang & Chen, Lin & Kanda, Yuki & Suzuki, Anna & Komiya, Atsuki & Maruyama, Shigenao, 2021. "Numerical analysis of gas production from large-scale methane hydrate sediments with fractures," Energy, Elsevier, vol. 236(C).
    5. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    6. Li, Bo & Zhang, Ting-Ting & Wan, Qing-Cui & Feng, Jing-Chun & Chen, Ling-Ling & Wei, Wen-Na, 2021. "Kinetic study of methane hydrate development involving the role of self-preservation effect in frozen sandy sediments," Applied Energy, Elsevier, vol. 300(C).
    7. Li, Xiaodong & Wan, Yizhao & Lei, Gang & Sun, Jiaxin & Cheng, Wan & Dou, Xiaofeng & Zhao, Yingjie & Ning, Fulong, 2024. "Numerical investigation of gas and sand production from hydrate-bearing sediments by incorporating sand migration based on IMPES method," Energy, Elsevier, vol. 288(C).
    8. Li, Nan & Zhang, Jie & Xia, Ming-Ji & Sun, Chang-Yu & Liu, Yan-Sheng & Chen, Guang-Jin, 2021. "Gas production from heterogeneous hydrate-bearing sediments by depressurization in a large-scale simulator," Energy, Elsevier, vol. 234(C).
    9. Zhong, Xiuping & Pan, Dongbin & Zhu, Ying & Wang, Yafei & Zhai, Lianghao & Li, Xitong & Tu, Guigang & Chen, Chen, 2021. "Fracture network stimulation effect on hydrate development by depressurization combined with thermal stimulation using injection-production well patterns," Energy, Elsevier, vol. 228(C).
    10. Wang, Xiao & Pan, Lin & Lau, Hon Chung & Zhang, Ming & Li, Longlong & Zhou, Qiao, 2018. "Reservoir volume of gas hydrate stability zones in permafrost regions of China," Applied Energy, Elsevier, vol. 225(C), pages 486-500.
    11. Liu, Zhiqiang & Wang, Linlin & Yu, Shihui, 2023. "Mechanisms governing production efficiency from methane hydrate bearing sediments," Energy, Elsevier, vol. 268(C).
    12. Pengfei Shen & Gang Li & Jiangfeng Liu & Xiaosen Li & Jinming Zhang, 2019. "Gas Permeability and Production Potential of Marine Hydrate Deposits in South China Sea," Energies, MDPI, vol. 12(21), pages 1-20, October.
    13. Hao, Yongmao & Liang, Jikai & Zhan, Shiyuan & Fan, Mingwu & Wang, Jiandong & Li, Shuxia & Yang, Fan & Yang, Shiwei & Wang, Chuanming, 2022. "Dynamic analysis on edge of sand detachment of natural gas hydrate reservoir," Energy, Elsevier, vol. 238(PB).
    14. Yang, Mingjun & Zheng, Jia-nan & Gao, Yi & Ma, Zhanquan & Lv, Xin & Song, Yongchen, 2019. "Dissociation characteristics of methane hydrates in South China Sea sediments by depressurization," Applied Energy, Elsevier, vol. 243(C), pages 266-273.
    15. Feng, Yongchang & Chen, Lin & Suzuki, Anna & Kogawa, Takuma & Okajima, Junnosuke & Komiya, Atsuki & Maruyama, Shigenao, 2019. "Numerical analysis of gas production from layered methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 166(C), pages 1106-1119.
    16. Cui, Jin-Long & Cheng, Li-Wei & Kan, Jing-Yu & Pang, Wei-Xin & Gu, Jun-Nan & Li, Kun & Wang, Ling-Ban & Sun, Chang-Yu & Wang, Xiao-Hui & Chen, Guang-Jin & Li, Xing-Xun, 2021. "Study on the spatial differences of methane hydrate dissociation process by depressurization using an L-shape simulator," Energy, Elsevier, vol. 228(C).
    17. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    18. Yu, Tao & Guan, Guoqing & Wang, Dayong & Song, Yongchen & Abudula, Abuliti, 2021. "Numerical investigation on the long-term gas production behavior at the 2017 Shenhu methane hydrate production site," Applied Energy, Elsevier, vol. 285(C).
    19. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
    20. Luo, Tingting & Li, Yanghui & Madhusudhan, B.N. & Sun, Xiang & Song, Yongchen, 2020. "Deformation behaviors of hydrate-bearing silty sediment induced by depressurization and thermal recovery," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.