IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i4p1386-1394.html
   My bibliography  Save this article

Development of a multicriteria tool for optimizing the renovation of buildings

Author

Listed:
  • Chantrelle, Fanny Pernodet
  • Lahmidi, Hicham
  • Keilholz, Werner
  • Mankibi, Mohamed El
  • Michel, Pierre

Abstract

The renovation of a building involves not just the fulfilment of functional requirements, but also considerations such as energy consumption, investment costs, environmental impact and wellbeing. As things stand, new design methods and tools are needed, and the aim of the research presented in this article was to develop a multicriteria tool, MultiOpt, for the optimization of renovation operations, with an emphasis on building envelopes, heating and cooling loads and control strategies. MultiOpt is based on existing assessment software and methods: it uses a genetic algorithm (NSGA-II) coupled to TRNSYS, and economic and environmental databases. This article illustrates its utilization in the renovation of a school in the southern French city of Nice which was representative of France's building stock. The study started with the monocriterion optimization of energy consumption, cost, thermal comfort, and life-cycle environmental impact. It then moved onto multicriteria optimizations. The monocriterion analyses focussed on the building's characteristics and performance; the multicriteria analyses were concerned with the interactions between the different objectives, and with identifying their convergences and divergences. The results demonstrated that MultiOpt can be used to compare different combinations of options and constraints, thus constituting a basis for operational decision-making.

Suggested Citation

  • Chantrelle, Fanny Pernodet & Lahmidi, Hicham & Keilholz, Werner & Mankibi, Mohamed El & Michel, Pierre, 2011. "Development of a multicriteria tool for optimizing the renovation of buildings," Applied Energy, Elsevier, vol. 88(4), pages 1386-1394, April.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:4:p:1386-1394
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00397-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hammache, Abdelaziz & Benali, Marzouk & Aubé, François, 2010. "Multi-objective self-adaptive algorithm for highly constrained problems: Novel method and applications," Applied Energy, Elsevier, vol. 87(8), pages 2467-2478, August.
    2. Sanaye, Sepehr & Hajabdollahi, Hassan, 2010. "Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm," Applied Energy, Elsevier, vol. 87(6), pages 1893-1902, June.
    3. Kumar, Rakesh & Sinha, A.R. & Singh, B.K. & Modhukalya, U., 2008. "A design optimization tool of earth-to-air heat exchanger using a genetic algorithm," Renewable Energy, Elsevier, vol. 33(10), pages 2282-2288.
    4. Kusiak, Andrew & Li, Mingyang, 2009. "Optimal decision making in ventilation control," Energy, Elsevier, vol. 34(11), pages 1835-1845.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Bellis, Fabio & Catalano, Luciano A., 2012. "CFD optimization of an immersed particle heat exchanger," Applied Energy, Elsevier, vol. 97(C), pages 841-848.
    2. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    3. Wang, Zhe & Li, Yanzhong, 2016. "A combined method for surface selection and layer pattern optimization of a multistream plate-fin heat exchanger," Applied Energy, Elsevier, vol. 165(C), pages 815-827.
    4. Li, You-Rong & Du, Mei-Tang & Wu, Shuang-Ying & Peng, Lan & Liu, Chao, 2012. "Exergoeconomic analysis and optimization of a condenser for a binary mixture of vapors in organic Rankine cycle," Energy, Elsevier, vol. 40(1), pages 341-347.
    5. Jaroslaw Krzywanski, 2019. "A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods," Energies, MDPI, vol. 12(23), pages 1-32, November.
    6. Aldona Skotnicka-Siepsiak, 2020. "Operation of a Tube GAHE in Northeastern Poland in Spring and Summer—A Comparison of Real-World Data with Mathematically Modeled Data," Energies, MDPI, vol. 13(7), pages 1-15, April.
    7. Kusiak, Andrew & Li, Mingyang, 2010. "Reheat optimization of the variable-air-volume box," Energy, Elsevier, vol. 35(5), pages 1997-2005.
    8. Reine, Alexandre & Bou Nader, Wissam, 2019. "Fuel consumption potential of different external combustion gas-turbine thermodynamic configurations for extended range electric vehicles," Energy, Elsevier, vol. 175(C), pages 900-913.
    9. Wei-Hsin Chen & Yi-Wei Li & Min-Hsing Chang & Chih-Che Chueh & Veeramuthu Ashokkumar & Lip Huat Saw, 2022. "Operation and Multi-Objective Design Optimization of a Plate Heat Exchanger with Zigzag Flow Channel Geometry," Energies, MDPI, vol. 15(21), pages 1-22, November.
    10. R. Shiller I. & Р. Шиллер Дж., 2018. "Нарративная Экономика И Нейроэкономика // Narrative Economics And Neuroeconomics," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 22(1), pages 64-91.
    11. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
    12. Li, Ming & Cao, Sunliang & Zhu, Xiaolin & Xu, Yang, 2022. "Techno-economic analysis of the transition towards the large-scale hybrid wind-tidal supported coastal zero-energy communities," Applied Energy, Elsevier, vol. 316(C).
    13. Sanaye, Sepehr & Dehghandokht, Masoud, 2011. "Modeling and multi-objective optimization of parallel flow condenser using evolutionary algorithm," Applied Energy, Elsevier, vol. 88(5), pages 1568-1577, May.
    14. Wang, Kun & He, Ya-Ling & Xue, Xiao-Dai & Du, Bao-Cun, 2017. "Multi-objective optimization of the aiming strategy for the solar power tower with a cavity receiver by using the non-dominated sorting genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 399-416.
    15. Wang, Limin & Deng, Lei & Ji, Chenglong & Liang, Erkai & Wang, Changxia & Che, Defu, 2016. "Multi-objective optimization of geometrical parameters of corrugated-undulated heat transfer surfaces," Applied Energy, Elsevier, vol. 174(C), pages 25-36.
    16. Srikanth, R. & Nemani, Pavan & Balaji, C., 2015. "Multi-objective geometric optimization of a PCM based matrix type composite heat sink," Applied Energy, Elsevier, vol. 156(C), pages 703-714.
    17. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    18. Turanjanin, Valentina & Vučićević, Biljana & Jovanović, Marina & Mirkov, Nikola & Lazović, Ivan, 2014. "Indoor CO2 measurements in Serbian schools and ventilation rate calculation," Energy, Elsevier, vol. 77(C), pages 290-296.
    19. Schibuola, Luigi & Scarpa, Massimiliano & Tambani, Chiara, 2018. "CO2 based ventilation control in energy retrofit: An experimental assessment," Energy, Elsevier, vol. 143(C), pages 606-614.
    20. Yonathan Heredia-Aricapa & Juan M. Belman-Flores & Jorge A. Soria-Alcaraz & Vicente Pérez-García & Francisco Elizalde-Blancas & Jorge A. Alfaro-Ayala & José Ramírez-Minguela, 2022. "Multi-Objective Optimization of a Multilayer Wire-on-Tube Condenser: Case Study R134a, R600a, and R513A," Energies, MDPI, vol. 15(17), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:4:p:1386-1394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.