IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v175y2019icp900-913.html
   My bibliography  Save this article

Fuel consumption potential of different external combustion gas-turbine thermodynamic configurations for extended range electric vehicles

Author

Listed:
  • Reine, Alexandre
  • Bou Nader, Wissam

Abstract

External combustion gas-turbine (ECGT) systems are among potential multi-fuel energy converters to substitute the internal combustion engine (ICE) as auxiliary power unit (APU) in future extended range hybrid electric vehicle (EREV) powertrains. Fuel consumption of these APUs in EREV strongly relies on the energy converter efficiency and power to weight ratio as well as on the energy management strategy deployed on-board. This paper presents a technological analysis and investigates the potential of fuel consumption savings of an EREV using different ECGT-system thermodynamic configurations. These include a simple ECGT (S-ECGT), a downstream simple ECGT (DS-ECGT), a downstream intercooled ECGT (DS-ECGT) and a downstream intercooled reheat ECGT (DIRe-ECGT). An energetic and technological analysis is conducted to identify the systems’ efficiency and power to weight ratio for different operating temperatures. An EREV model is developed and the different ECGT-system configurations are integrated as APUs. A bi-level optimization method is proposed to optimize the powertrain. It consists of coupling the non-dominated sorting genetic algorithm (NSGA) to the dynamic programing (DP) in order to minimize the fuel consumption and the number of switching On/Off of the APU, which impacts its durability. Fuel consumption simulations are performed on the worldwide-harmonized light vehicles test cycle (WLTC). Results show that the DIRe-ECGT-APU presents an improved fuel consumption compared to the other investigated ECGT-systems and a good potential for implementation in EREVs.

Suggested Citation

  • Reine, Alexandre & Bou Nader, Wissam, 2019. "Fuel consumption potential of different external combustion gas-turbine thermodynamic configurations for extended range electric vehicles," Energy, Elsevier, vol. 175(C), pages 900-913.
  • Handle: RePEc:eee:energy:v:175:y:2019:i:c:p:900-913
    DOI: 10.1016/j.energy.2019.03.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219304803
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.03.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanaye, Sepehr & Hajabdollahi, Hassan, 2010. "Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm," Applied Energy, Elsevier, vol. 87(6), pages 1893-1902, June.
    2. Bou Nader, Wissam S. & Mansour, Charbel J. & Nemer, Maroun G., 2018. "Optimization of a Brayton external combustion gas-turbine system for extended range electric vehicles," Energy, Elsevier, vol. 150(C), pages 745-758.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Guizhou & Wang, Jinzhong & Chen, Changlei & Wang, Haoran, 2021. "A variable-voltage ultra-capacitor/battery hybrid power source for extended range electric vehicle," Energy, Elsevier, vol. 231(C).
    2. Shen, Wenkai & Liu, Li & Hu, Qiming & Liu, Guichuang & Wang, Jiwei & Zhang, Ning & Wu, Shaohua & Qiu, Penghua & Song, Shaowei, 2021. "Combustion characteristics of ignition processes for lean premixed swirling combustor under visual conditions," Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Bellis, Fabio & Catalano, Luciano A., 2012. "CFD optimization of an immersed particle heat exchanger," Applied Energy, Elsevier, vol. 97(C), pages 841-848.
    2. Wang, Zhe & Li, Yanzhong, 2016. "A combined method for surface selection and layer pattern optimization of a multistream plate-fin heat exchanger," Applied Energy, Elsevier, vol. 165(C), pages 815-827.
    3. Ezzat, M.F. & Dincer, I., 2019. "Development and exergetic assessment of a new hybrid vehicle incorporating gas turbine as powering option," Energy, Elsevier, vol. 170(C), pages 112-119.
    4. Li, You-Rong & Du, Mei-Tang & Wu, Shuang-Ying & Peng, Lan & Liu, Chao, 2012. "Exergoeconomic analysis and optimization of a condenser for a binary mixture of vapors in organic Rankine cycle," Energy, Elsevier, vol. 40(1), pages 341-347.
    5. Jaroslaw Krzywanski, 2019. "A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods," Energies, MDPI, vol. 12(23), pages 1-32, November.
    6. Chantrelle, Fanny Pernodet & Lahmidi, Hicham & Keilholz, Werner & Mankibi, Mohamed El & Michel, Pierre, 2011. "Development of a multicriteria tool for optimizing the renovation of buildings," Applied Energy, Elsevier, vol. 88(4), pages 1386-1394, April.
    7. Wei-Hsin Chen & Yi-Wei Li & Min-Hsing Chang & Chih-Che Chueh & Veeramuthu Ashokkumar & Lip Huat Saw, 2022. "Operation and Multi-Objective Design Optimization of a Plate Heat Exchanger with Zigzag Flow Channel Geometry," Energies, MDPI, vol. 15(21), pages 1-22, November.
    8. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Li, Ming & Cao, Sunliang & Zhu, Xiaolin & Xu, Yang, 2022. "Techno-economic analysis of the transition towards the large-scale hybrid wind-tidal supported coastal zero-energy communities," Applied Energy, Elsevier, vol. 316(C).
    10. Paweł Krawczyk & Artur Kopczyński & Jakub Lasocki, 2022. "Modeling and Simulation of Extended-Range Electric Vehicle with Control Strategy to Assess Fuel Consumption and CO 2 Emission for the Expected Driving Range," Energies, MDPI, vol. 15(12), pages 1-41, June.
    11. Sanaye, Sepehr & Dehghandokht, Masoud, 2011. "Modeling and multi-objective optimization of parallel flow condenser using evolutionary algorithm," Applied Energy, Elsevier, vol. 88(5), pages 1568-1577, May.
    12. Wang, Kun & He, Ya-Ling & Xue, Xiao-Dai & Du, Bao-Cun, 2017. "Multi-objective optimization of the aiming strategy for the solar power tower with a cavity receiver by using the non-dominated sorting genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 399-416.
    13. Wang, Limin & Deng, Lei & Ji, Chenglong & Liang, Erkai & Wang, Changxia & Che, Defu, 2016. "Multi-objective optimization of geometrical parameters of corrugated-undulated heat transfer surfaces," Applied Energy, Elsevier, vol. 174(C), pages 25-36.
    14. Srikanth, R. & Nemani, Pavan & Balaji, C., 2015. "Multi-objective geometric optimization of a PCM based matrix type composite heat sink," Applied Energy, Elsevier, vol. 156(C), pages 703-714.
    15. Yonathan Heredia-Aricapa & Juan M. Belman-Flores & Jorge A. Soria-Alcaraz & Vicente Pérez-García & Francisco Elizalde-Blancas & Jorge A. Alfaro-Ayala & José Ramírez-Minguela, 2022. "Multi-Objective Optimization of a Multilayer Wire-on-Tube Condenser: Case Study R134a, R600a, and R513A," Energies, MDPI, vol. 15(17), pages 1-14, August.
    16. He, Senyu & Yin, Jianhua & Zhang, Bin & Wang, Zhaohua, 2018. "How to upgrade an enterprise’s low-carbon technologies under a carbon tax: The trade-off between tax and upgrade fee," Applied Energy, Elsevier, vol. 227(C), pages 564-573.
    17. Wang, Kun & Li, Ming-Jia & Guo, Jia-Qi & Li, Peiwen & Liu, Zhan-Bin, 2018. "A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants," Applied Energy, Elsevier, vol. 212(C), pages 109-121.
    18. Dizaji, Hamed Sadighi & Pourhedayat, Samira & Aldawi, Fayez & Moria, Hazim & Anqi, Ali E. & Jarad, Fahd, 2022. "Proposing an innovative and explicit economic criterion for all passive heat transfer enhancement techniques of heat exchangers," Energy, Elsevier, vol. 239(PC).
    19. Cheng, Xianda & Zheng, Haoran & Dong, Wei & Yang, Xuesen, 2023. "Performance prediction of marine intercooled cycle gas turbine based on expanded similarity parameters," Energy, Elsevier, vol. 265(C).
    20. Zhang, Chengyu & Gümmer, Volker, 2020. "Multi-objective optimization and system evaluation of recuperated helicopter turboshaft engines," Energy, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:175:y:2019:i:c:p:900-913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.