IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v156y2015icp703-714.html
   My bibliography  Save this article

Multi-objective geometric optimization of a PCM based matrix type composite heat sink

Author

Listed:
  • Srikanth, R.
  • Nemani, Pavan
  • Balaji, C.

Abstract

This paper reports the results of a numerical optimization and experimental investigation of phase change material (PCM) based composite pin fin matrix heat sink. The main objective of this study is to determine the optimized configuration of the matrix type heat sink that will stretch the operation time during the heating cycle and minimize the time during the discharging cycle. The PCM used is n-eicosane. The heat sink is made of aluminium. A constant heat flux of 1.9kW/m2 is applied at the bottom of the heat sink. The numerical results were matched up with the experimental results to determine the overall heat transfer coefficient with the help of commercially available ANSYS FLUENT 14.0 software. For constant power level and constant volume of the PCM, 40 different geometrical configurations of heat sinks were considered and temperature time histories were obtained for both the charging and discharging cycles by using full three dimensional simulations of flow and conjugate heat transfer including phase change using FLUENT 14.0. The output of these simulations was given as an input to a neural network and a multi objective optimization was carried out to determine the optimum configuration of the heat sink, that maximizes the charging period and minimizes the discharging period simultaneously.

Suggested Citation

  • Srikanth, R. & Nemani, Pavan & Balaji, C., 2015. "Multi-objective geometric optimization of a PCM based matrix type composite heat sink," Applied Energy, Elsevier, vol. 156(C), pages 703-714.
  • Handle: RePEc:eee:appene:v:156:y:2015:i:c:p:703-714
    DOI: 10.1016/j.apenergy.2015.07.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915008752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.07.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sertkaya, Ahmet Ali & Bilir, Şefik & Kargıcı, Suna, 2011. "Experimental investigation of the effects of orientation angle on heat transfer performance of pin-finned surfaces in natural convection," Energy, Elsevier, vol. 36(3), pages 1513-1517.
    2. Yin, Huibin & Gao, Xuenong & Ding, Jing & Zhang, Zhengguo & Fang, Yutang, 2010. "Thermal management of electronic components with thermal adaptation composite material," Applied Energy, Elsevier, vol. 87(12), pages 3784-3791, December.
    3. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    4. Mahmoud, Saad & Tang, Aaron & Toh, Chin & AL-Dadah, Raya & Soo, Sein Leung, 2013. "Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks," Applied Energy, Elsevier, vol. 112(C), pages 1349-1356.
    5. Wang, Yi-Hsien & Yang, Yue-Tzu, 2011. "Three-dimensional transient cooling simulations of a portable electronic device using PCM (phase change materials) in multi-fin heat sink," Energy, Elsevier, vol. 36(8), pages 5214-5224.
    6. Sanaye, Sepehr & Hajabdollahi, Hassan, 2010. "Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm," Applied Energy, Elsevier, vol. 87(6), pages 1893-1902, June.
    7. Antunes, Carlos Henggeler & Pires, Dulce Fernão & Barrico, Carlos & Gomes, Álvaro & Martins, António Gomes, 2009. "A multi-objective evolutionary algorithm for reactive power compensation in distribution networks," Applied Energy, Elsevier, vol. 86(7-8), pages 977-984, July.
    8. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liu, Yingjun & Liao, Shuguang, 2014. "A study on the use of phase change materials (PCMs) in combination with a natural cold source for space cooling in telecommunications base stations (TBSs) in China," Applied Energy, Elsevier, vol. 117(C), pages 95-103.
    9. Pillai, K. K. & Brinkworth, B. J., 1976. "The storage of low grade thermal energy using phase change materials," Applied Energy, Elsevier, vol. 2(3), pages 205-216, July.
    10. Weng, Ying-Che & Cho, Hung-Pin & Chang, Chih-Chung & Chen, Sih-Li, 2011. "Heat pipe with PCM for electronic cooling," Applied Energy, Elsevier, vol. 88(5), pages 1825-1833, May.
    11. Martin, Viktoria & He, Bo & Setterwall, Fredrik, 2010. "Direct contact PCM-water cold storage," Applied Energy, Elsevier, vol. 87(8), pages 2652-2659, August.
    12. Jang, Daeseok & Yook, Se-Jin & Lee, Kwan-Soo, 2014. "Optimum design of a radial heat sink with a fin-height profile for high-power LED lighting applications," Applied Energy, Elsevier, vol. 116(C), pages 260-268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Lazarov, Boyan S. & Sigmund, Ole & Meyer, Knud E. & Alexandersen, Joe, 2018. "Experimental validation of additively manufactured optimized shapes for passive cooling," Applied Energy, Elsevier, vol. 226(C), pages 330-339.
    3. Safari, Vahid & Kamkari, Babak & Hooman, Kamel & Khodadadi, J.M., 2022. "Sensitivity analysis of design parameters for melting process of lauric acid in the vertically and horizontally oriented rectangular thermal storage units," Energy, Elsevier, vol. 255(C).
    4. Kalbasi, Rasool & Afrand, Masoud & Alsarraf, Jalal & Tran, Minh-Duc, 2019. "Studies on optimum fins number in PCM-based heat sinks," Energy, Elsevier, vol. 171(C), pages 1088-1099.
    5. Shanks, Michael & Shoalmire, Charles M. & Deckard, Michael & Gohil, Karan N. & Lewis, Henry & Lin, Darin & Shamberger, Patrick J. & Jain, Neera, 2022. "Design of spatial variability in thermal energy storage modules for enhanced power density," Applied Energy, Elsevier, vol. 314(C).
    6. Naqiuddin, Nor Haziq & Saw, Lip Huat & Yew, Ming Chian & Yusof, Farazila & Poon, Hiew Mun & Cai, Zuansi & Thiam, Hui San, 2018. "Numerical investigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method," Applied Energy, Elsevier, vol. 222(C), pages 437-450.
    7. Wang, Hongfei & Wang, Fanxu & Li, Zongtao & Tang, Yong & Yu, Binhai & Yuan, Wei, 2016. "Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material," Applied Energy, Elsevier, vol. 176(C), pages 221-232.
    8. Akula, Rajesh & Balaji, C., 2022. "Thermal management of 18650 Li-ion battery using novel fins–PCM–EG composite heat sinks," Applied Energy, Elsevier, vol. 316(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2018. "A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications," Energy, Elsevier, vol. 162(C), pages 1169-1182.
    3. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liao, Shuguang, 2015. "Performance of a free-air cooling system for telecommunications base stations using phase change materials (PCMs): In-situ tests," Applied Energy, Elsevier, vol. 147(C), pages 325-334.
    4. Tang, Song-Zhen & He, Yan & He, Ya-Ling & Wang, Fei-Long, 2020. "Enhancing the thermal response of a latent heat storage system for suppressing temperature fluctuation of dusty flue gas," Applied Energy, Elsevier, vol. 266(C).
    5. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Lukas Hegner & Stefan Krimmel & Rebecca Ravotti & Dominic Festini & Jörg Worlitschek & Anastasia Stamatiou, 2021. "Experimental Feasibility Study of a Direct Contact Latent Heat Storage Using an Ester as a Bio-Based Storage Material," Energies, MDPI, vol. 14(2), pages 1-26, January.
    7. Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Shahsavar, Amin & Al-Rashed, Abdullah A.A.A. & Entezari, Sajad & Sardari, Pouyan Talebizadeh, 2019. "Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium," Energy, Elsevier, vol. 171(C), pages 751-769.
    9. Shafie-khah, M. & Kheradmand, M. & Javadi, S. & Azenha, M. & de Aguiar, J.L.B. & Castro-Gomes, J. & Siano, P. & Catalão, J.P.S., 2016. "Optimal behavior of responsive residential demand considering hybrid phase change materials," Applied Energy, Elsevier, vol. 163(C), pages 81-92.
    10. Pitié, F. & Zhao, C.Y. & Baeyens, J. & Degrève, J. & Zhang, H.L., 2013. "Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles," Applied Energy, Elsevier, vol. 109(C), pages 505-513.
    11. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    12. Anisur, M.R. & Mahfuz, M.H. & Kibria, M.A. & Saidur, R. & Metselaar, I.H.S.C. & Mahlia, T.M.I., 2013. "Curbing global warming with phase change materials for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 23-30.
    13. Ling, Ziye & Zhang, Zhengguo & Shi, Guoquan & Fang, Xiaoming & Wang, Lei & Gao, Xuenong & Fang, Yutang & Xu, Tao & Wang, Shuangfeng & Liu, Xiaohong, 2014. "Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 427-438.
    14. Sebastian Ammann & Andreas Ammann & Rebecca Ravotti & Ludger J. Fischer & Anastasia Stamatiou & Jörg Worlitschek, 2018. "Effective Separation of a Water in Oil Emulsion from a Direct Contact Latent Heat Storage System," Energies, MDPI, vol. 11(9), pages 1-15, August.
    15. Ibrahim, Nasiru I. & Al-Sulaiman, Fahad A. & Rahman, Saidur & Yilbas, Bekir S. & Sahin, Ahmet Z., 2017. "Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 26-50.
    16. Sharma, Chander Shekhar & Tiwari, Manish K. & Zimmermann, Severin & Brunschwiler, Thomas & Schlottig, Gerd & Michel, Bruno & Poulikakos, Dimos, 2015. "Energy efficient hotspot-targeted embedded liquid cooling of electronics," Applied Energy, Elsevier, vol. 138(C), pages 414-422.
    17. Qv, Dehu & Ni, Long & Yao, Yang & Hu, Wenju, 2015. "Reliability verification of a solar–air source heat pump system with PCM energy storage in operating strategy transition," Renewable Energy, Elsevier, vol. 84(C), pages 46-55.
    18. Rathod, Manish K. & Banerjee, Jyotirmay, 2013. "Thermal stability of phase change materials used in latent heat energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 246-258.
    19. Sarı, Ahmet & Alkan, Cemil & Bilgin, Cahit, 2014. "Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties," Applied Energy, Elsevier, vol. 136(C), pages 217-227.
    20. Ghanbarpour, A. & Hosseini, M.J. & Ranjbar, A.A. & Rahimi, M. & Bahrampoury, R. & Ghanbarpour, M., 2021. "Evaluation of heat sink performance using PCM and vapor chamber/heat pipe," Renewable Energy, Elsevier, vol. 163(C), pages 698-719.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:156:y:2015:i:c:p:703-714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.