IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v182y2019icp1222-1238.html
   My bibliography  Save this article

The future of European onshore wind energy potential: Detailed distribution and simulation of advanced turbine designs

Author

Listed:
  • Ryberg, David Severin
  • Caglayan, Dilara Gulcin
  • Schmitt, Sabrina
  • Linßen, Jochen
  • Stolten, Detlef
  • Robinius, Martin

Abstract

Considering the need to reduce greenhouse gas emissions, onshore wind energy is certain to play a major role in future energy systems. This topic has received significant attention from the research community, producing many estimations of Europe's onshore wind potential for capacity and generation. Despite this focus, previous estimates appear to have underpredicted both the amount of available future wind capacity as well as its performance. Foremost in this regard is the common use of contemporary, or at least near-future, turbine designs which are not fitting for a far-future context. In response to this, an improved, transparent, and fully reproducible work flow is presented here, and applied to determine a future-oriented onshore wind energy potential for Europe. Within a scenario of turbine cost and design in 2050, 13.4 TW of capacity is found to be available, allowing for 34.3 PWh of average generation per year. By sorting the explicitly-placed potential installation locations by their expected generation cost, national relationships between cost and performance versus installed capacity are found, and it is also seen that all countries possess some potential for onshore wind energy generation below 4 ct€ kWh-1. Furthermore, it is unlikely for these costs to exceed 6 ct€ kWh-1 in any future capacity scenario.

Suggested Citation

  • Ryberg, David Severin & Caglayan, Dilara Gulcin & Schmitt, Sabrina & Linßen, Jochen & Stolten, Detlef & Robinius, Martin, 2019. "The future of European onshore wind energy potential: Detailed distribution and simulation of advanced turbine designs," Energy, Elsevier, vol. 182(C), pages 1222-1238.
  • Handle: RePEc:eee:energy:v:182:y:2019:i:c:p:1222-1238
    DOI: 10.1016/j.energy.2019.06.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219311818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:182:y:2019:i:c:p:1222-1238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.