IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v167y2022ics1364032122006128.html
   My bibliography  Save this article

Recent advances in damage detection of wind turbine blades: A state-of-the-art review

Author

Listed:
  • Kaewniam, Panida
  • Cao, Maosen
  • Alkayem, Nizar Faisal
  • Li, Dayang
  • Manoach, Emil

Abstract

Wind turbine structures are key components for modern transformation into free energy and greener environment. In recent years, a rapid growth in the development and installation of wind turbines has been witnessed. Moreover, the increase in capacity and size of wind farms worldwide triggers wide concerns about their safety and reliability. Therefore, structural health monitoring (SHM) and damage identification of wind turbines has become a major research focus. Particularly, wind turbine blades (WTBs) are major wind turbine components that are vulnerable for different types of damage due to various environmental effects, fatigue loadings, etc. Therefore, researchers have utilized SHM and non-destructive testing (NDT) techniques for developing effective damage detection tools for WTBs. Such techniques can play a great role to increase reliability, maximize the output profit, and manage maintenance strategies of wind turbines. In the view of recent developments and the lack of comprehensive survey that can summarize and classify the state-of-the-art damage detection of WTBs, in addition to illustrate the research gaps and unsolved problems, an urgent review of the topic of damage detection of WTBs is required. Thus, this paper presents an up-to-date review based on five research areas: signal responses, features, sensors, NDT techniques, and testing methods. The paper aims to provide a big picture and summarize the previous studies, including the classification and analysis of representative studies. Moreover, future research directions are discussed to provide researchers with new research ideas and highlight the gaps in the literature under the title of damage identification of WTBs.

Suggested Citation

  • Kaewniam, Panida & Cao, Maosen & Alkayem, Nizar Faisal & Li, Dayang & Manoach, Emil, 2022. "Recent advances in damage detection of wind turbine blades: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122006128
    DOI: 10.1016/j.rser.2022.112723
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122006128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112723?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wymore, Mathew L. & Van Dam, Jeremy E. & Ceylan, Halil & Qiao, Daji, 2015. "A survey of health monitoring systems for wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 976-990.
    2. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    3. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    4. Yang, Bin & Sun, Dongbai, 2013. "Testing, inspecting and monitoring technologies for wind turbine blades: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 515-526.
    5. Peter J. Schubel & Richard J. Crossley, 2012. "Wind Turbine Blade Design," Energies, MDPI, vol. 5(9), pages 1-25, September.
    6. Daniliuk, Vladislav & Xu, Yuanming & Liu, Ruobing & He, Tianpeng & Wang, Xi, 2020. "Ultrasonic de-icing of wind turbine blades: Performance comparison of perspective transducers," Renewable Energy, Elsevier, vol. 145(C), pages 2005-2018.
    7. Yang, Ruizhen & He, Yunze & Zhang, Hong, 2016. "Progress and trends in nondestructive testing and evaluation for wind turbine composite blade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1225-1250.
    8. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    9. Schubel, P.J. & Crossley, R.J. & Boateng, E.K.G. & Hutchinson, J.R., 2013. "Review of structural health and cure monitoring techniques for large wind turbine blades," Renewable Energy, Elsevier, vol. 51(C), pages 113-123.
    10. Tang, Baoping & Liu, Wenyi & Song, Tao, 2010. "Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution," Renewable Energy, Elsevier, vol. 35(12), pages 2862-2866.
    11. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    12. Willis, D.J. & Niezrecki, C. & Kuchma, D. & Hines, E. & Arwade, S.R. & Barthelmie, R.J. & DiPaola, M. & Drane, P.J. & Hansen, C.J. & Inalpolat, M. & Mack, J.H. & Myers, A.T. & Rotea, M., 2018. "Wind energy research: State-of-the-art and future research directions," Renewable Energy, Elsevier, vol. 125(C), pages 133-154.
    13. Arcos Jiménez, Alfredo & Zhang, Long & Gómez Muñoz, Carlos Quiterio & García Márquez, Fausto Pedro, 2020. "Maintenance management based on Machine Learning and nonlinear features in wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 316-328.
    14. Rezaei, Mohammad M. & Behzad, Mehdi & Moradi, Hamed & Haddadpour, Hassan, 2016. "Modal-based damage identification for the nonlinear model of modern wind turbine blade," Renewable Energy, Elsevier, vol. 94(C), pages 391-409.
    15. Chen, Jianbing & Song, Yupeng & Peng, Yongbo & Nielsen, Søren R.K. & Zhang, Zili, 2020. "An efficient rotational sampling method of wind fields for wind turbine blade fatigue analysis," Renewable Energy, Elsevier, vol. 146(C), pages 2170-2187.
    16. Martinez-Luengo, Maria & Kolios, Athanasios & Wang, Lin, 2016. "Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 91-105.
    17. Xu, Jin & Zhang, Lei & Li, Xue & Li, Shuang & Yang, Ke, 2020. "A study of dynamic response of a wind turbine blade based on the multi-body dynamics method," Renewable Energy, Elsevier, vol. 155(C), pages 358-368.
    18. Tang, Jialin & Soua, Slim & Mares, Cristinel & Gan, Tat-Hean, 2016. "An experimental study of acoustic emission methodology for in service condition monitoring of wind turbine blades," Renewable Energy, Elsevier, vol. 99(C), pages 170-179.
    19. Zhao, Xueyan & Lang, Ziqiang, 2019. "Baseline model based structural health monitoring method under varying environment," Renewable Energy, Elsevier, vol. 138(C), pages 1166-1175.
    20. Habibi, Hossein & Cheng, Liang & Zheng, Haitao & Kappatos, Vassilios & Selcuk, Cem & Gan, Tat-Hean, 2015. "A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations," Renewable Energy, Elsevier, vol. 83(C), pages 859-870.
    21. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Zhiyuan & Huang, Xianzhen & Wang, Bingxiang & Liao, Xin & Liu, Huizhen & Ding, Pengfei, 2024. "Time-dependent reliability-based design optimization of main shaft bearings in wind turbines involving mixed-integer variables," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    2. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. García Márquez, Fausto Pedro & Peco Chacón, Ana María, 2020. "A review of non-destructive testing on wind turbines blades," Renewable Energy, Elsevier, vol. 161(C), pages 998-1010.
    4. Xiaowen Song & Zhitai Xing & Yan Jia & Xiaojuan Song & Chang Cai & Yinan Zhang & Zekun Wang & Jicai Guo & Qingan Li, 2022. "Review on the Damage and Fault Diagnosis of Wind Turbine Blades in the Germination Stage," Energies, MDPI, vol. 15(20), pages 1-17, October.
    5. Wenjie Wang & Yu Xue & Chengkuan He & Yongnian Zhao, 2022. "Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades," Energies, MDPI, vol. 15(15), pages 1-31, August.
    6. Liu, Y. & Hajj, M. & Bao, Y., 2022. "Review of robot-based damage assessment for offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
    8. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    9. Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
    10. Dimitris Al. Katsaprakakis & Nikos Papadakis & Ioannis Ntintakis, 2021. "A Comprehensive Analysis of Wind Turbine Blade Damage," Energies, MDPI, vol. 14(18), pages 1-31, September.
    11. Urmeneta, Jon & Izquierdo, Juan & Leturiondo, Urko, 2023. "A methodology for performance assessment at system level—Identification of operating regimes and anomaly detection in wind turbines," Renewable Energy, Elsevier, vol. 205(C), pages 281-292.
    12. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    13. Feng Gao & Xiaojiang Wu & Qiang Liu & Juncheng Liu & Xiyun Yang, 2019. "Fault Simulation and Online Diagnosis of Blade Damage of Large-Scale Wind Turbines," Energies, MDPI, vol. 12(3), pages 1-16, February.
    14. Guo, Jihong & Liu, Chao & Cao, Jinfeng & Jiang, Dongxiang, 2021. "Damage identification of wind turbine blades with deep convolutional neural networks," Renewable Energy, Elsevier, vol. 174(C), pages 122-133.
    15. Sungmok Hwang & Cheol Yoo, 2021. "Health Monitoring and Diagnosis System for a Small H-Type Darrieus Vertical-Axis Wind Turbine," Energies, MDPI, vol. 14(21), pages 1-18, November.
    16. Yuri Merizalde & Luis Hernández-Callejo & Oscar Duque-Perez & Víctor Alonso-Gómez, 2019. "Maintenance Models Applied to Wind Turbines. A Comprehensive Overview," Energies, MDPI, vol. 12(2), pages 1-41, January.
    17. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    18. Bakdi, Azzeddine & Kouadri, Abdelmalek & Mekhilef, Saad, 2019. "A data-driven algorithm for online detection of component and system faults in modern wind turbines at different operating zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 546-555.
    19. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    20. Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122006128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.