IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v138y2019icp1166-1175.html
   My bibliography  Save this article

Baseline model based structural health monitoring method under varying environment

Author

Listed:
  • Zhao, Xueyan
  • Lang, Ziqiang

Abstract

Environment has significant impacts on the structure performance and will change features of sensor measurements on the monitored structure. The effect of varying environment needs to be considered and eliminated while conducting structural health monitoring. In order to achieve this purpose, a baseline model based structural health monitoring method is proposed in this paper. The relationship between signal features and varying environment, known as a baseline model, is first established. Then, a tolerance range of the signal feature is evaluated via a data based statistical analysis. Furthermore, the health indicator, which is defined as the proportion of signal features within the tolerance range, is used to judge whether the structural system is in normal working condition or not so as to implement the structural health monitoring. Finally, experimental data analysis for an operating wind turbine is conducted and the results demonstrate the performance of the proposed new technique.

Suggested Citation

  • Zhao, Xueyan & Lang, Ziqiang, 2019. "Baseline model based structural health monitoring method under varying environment," Renewable Energy, Elsevier, vol. 138(C), pages 1166-1175.
  • Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:1166-1175
    DOI: 10.1016/j.renene.2019.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811930151X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elforjani, Mohamed & Bechhoefer, Eric, 2018. "Analysis of extremely modulated faulty wind turbine data using spectral kurtosis and signal intensity estimator," Renewable Energy, Elsevier, vol. 127(C), pages 258-268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alharthi, Majed & Hanif, Imran & Alamoudi, Hawazen, 2022. "Impact of environmental pollution on human health and financial status of households in MENA countries: Future of using renewable energy to eliminate the environmental pollution," Renewable Energy, Elsevier, vol. 190(C), pages 338-346.
    2. Hang, Xinyu & Zhu, Xiaoxun & Gao, Xiaoxia & Wang, Yu & Liu, Longhu, 2024. "Study on crack monitoring method of wind turbine blade based on AI model: Integration of classification, detection, segmentation and fault level evaluation," Renewable Energy, Elsevier, vol. 224(C).
    3. Kaewniam, Panida & Cao, Maosen & Alkayem, Nizar Faisal & Li, Dayang & Manoach, Emil, 2022. "Recent advances in damage detection of wind turbine blades: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merainani, Boualem & Laddada, Sofiane & Bechhoefer, Eric & Chikh, Mohamed Abdessamed Ait & Benazzouz, Djamel, 2022. "An integrated methodology for estimating the remaining useful life of high-speed wind turbine shaft bearings with limited samples," Renewable Energy, Elsevier, vol. 182(C), pages 1141-1151.
    2. Kong, Yun & Han, Qinkai & Chu, Fulei & Qin, Yechen & Dong, Mingming, 2023. "Spectral ensemble sparse representation classification approach for super-robust health diagnostics of wind turbine planetary gearbox," Renewable Energy, Elsevier, vol. 219(P1).
    3. Kong, Yun & Wang, Tianyang & Chu, Fulei, 2019. "Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear," Renewable Energy, Elsevier, vol. 132(C), pages 1373-1388.
    4. Francesco Castellani & Luigi Garibaldi & Alessandro Paolo Daga & Davide Astolfi & Francesco Natili, 2020. "Diagnosis of Faulty Wind Turbine Bearings Using Tower Vibration Measurements," Energies, MDPI, vol. 13(6), pages 1-18, March.
    5. Elforjani, Mohamed, 2020. "Diagnosis and prognosis of real world wind turbine gears," Renewable Energy, Elsevier, vol. 147(P1), pages 1676-1693.
    6. Miao, Yonghao & Zhao, Ming & Liang, Kaixuan & Lin, Jing, 2020. "Application of an improved MCKDA for fault detection of wind turbine gear based on encoder signal," Renewable Energy, Elsevier, vol. 151(C), pages 192-203.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:138:y:2019:i:c:p:1166-1175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.