IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp170-179.html
   My bibliography  Save this article

An experimental study of acoustic emission methodology for in service condition monitoring of wind turbine blades

Author

Listed:
  • Tang, Jialin
  • Soua, Slim
  • Mares, Cristinel
  • Gan, Tat-Hean

Abstract

A laboratory study is reported regarding fatigue damage growth monitoring in a complete 45.7 m long wind turbine blade typically designed for a 2 MW generator. The main purpose of this study was to investigate the feasibility of in-service monitoring of the structural health of blades by acoustic emission (AE). Cyclic loading by compact resonant masses was performed to accurately simulate in-service load conditions and 187 kcs of fatigue were performed over periods which totalled 21 days, during which AE monitoring was performed with a 4 sensor array. Before the final 8 days of fatigue testing a simulated rectangular defect of dimensions 1 m × 0.05 m × 0.01 m was introduced into the blade material. The growth of fatigue damage from this source defect was successfully detected from AE monitoring. The AE signals were correlated with the growth of delamination up to 0.3 m in length and channel cracking in the final two days of fatigue testing. A high detection threshold of 40 dB was employed to suppress AE noise generated by the fatigue loading, which was a realistic simulation of the noise that would be generated in service from wind impact and acoustic coupling to the tower and nacelle. In order to decrease the probability of false alarm, a threshold of 45 dB was selected for further data processing. The crack propagation related AE signals discovered by counting only received pulse signals (bursts) from 4 sensors whose arrival times lay within the maximum variation of travel times from the damage source to the different sensors in the array. Analysis of the relative arrival times at the sensors by triangulation method successfully determined the location of damage growth, which was confirmed by photographic evidence. In view of the small scale of the damage growth relative to the blade size that was successfully detected, the developed AE monitoring methodology shows excellent promise as an in-service blade integrity monitoring technique capable of providing early warnings of developing damage before it becomes too expensive to repair.

Suggested Citation

  • Tang, Jialin & Soua, Slim & Mares, Cristinel & Gan, Tat-Hean, 2016. "An experimental study of acoustic emission methodology for in service condition monitoring of wind turbine blades," Renewable Energy, Elsevier, vol. 99(C), pages 170-179.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:170-179
    DOI: 10.1016/j.renene.2016.06.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116305729
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.06.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vick, Brian & Broneske, Sylvia, 2013. "Effect of blade flutter and electrical loading on small wind turbine noise," Renewable Energy, Elsevier, vol. 50(C), pages 1044-1052.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
    2. Feng Gao & Xiaojiang Wu & Qiang Liu & Juncheng Liu & Xiyun Yang, 2019. "Fault Simulation and Online Diagnosis of Blade Damage of Large-Scale Wind Turbines," Energies, MDPI, vol. 12(3), pages 1-16, February.
    3. Mingwei Lei & Xingfen Wang & Meihua Wang & Yitao Cheng, 2024. "Improved YOLOv5 Based on Multi-Strategy Integration for Multi-Category Wind Turbine Surface Defect Detection," Energies, MDPI, vol. 17(8), pages 1-25, April.
    4. Papatheou, Evangelos & Dervilis, Nikolaos & Maguire, Andrew E. & Campos, Carles & Antoniadou, Ifigeneia & Worden, Keith, 2017. "Performance monitoring of a wind turbine using extreme function theory," Renewable Energy, Elsevier, vol. 113(C), pages 1490-1502.
    5. Chandrasekhar, Kartik & Stevanovic, Nevena & Cross, Elizabeth J. & Dervilis, Nikolaos & Worden, Keith, 2021. "Damage detection in operational wind turbine blades using a new approach based on machine learning," Renewable Energy, Elsevier, vol. 168(C), pages 1249-1264.
    6. García Márquez, Fausto Pedro & Peco Chacón, Ana María, 2020. "A review of non-destructive testing on wind turbines blades," Renewable Energy, Elsevier, vol. 161(C), pages 998-1010.
    7. Guo, Jihong & Liu, Chao & Cao, Jinfeng & Jiang, Dongxiang, 2021. "Damage identification of wind turbine blades with deep convolutional neural networks," Renewable Energy, Elsevier, vol. 174(C), pages 122-133.
    8. Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
    9. Kaewniam, Panida & Cao, Maosen & Alkayem, Nizar Faisal & Li, Dayang & Manoach, Emil, 2022. "Recent advances in damage detection of wind turbine blades: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Wenjie Wang & Yu Xue & Chengkuan He & Yongnian Zhao, 2022. "Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades," Energies, MDPI, vol. 15(15), pages 1-31, August.
    11. Xiaowen Song & Zhitai Xing & Yan Jia & Xiaojuan Song & Chang Cai & Yinan Zhang & Zekun Wang & Jicai Guo & Qingan Li, 2022. "Review on the Damage and Fault Diagnosis of Wind Turbine Blades in the Germination Stage," Energies, MDPI, vol. 15(20), pages 1-17, October.
    12. Chen, Bin & Yu, Songhao & Yu, Yang & Zhou, Yilin, 2020. "Acoustical damage detection of wind turbine blade using the improved incremental support vector data description," Renewable Energy, Elsevier, vol. 156(C), pages 548-557.
    13. Miao, Yonghao & Zhao, Ming & Liang, Kaixuan & Lin, Jing, 2020. "Application of an improved MCKDA for fault detection of wind turbine gear based on encoder signal," Renewable Energy, Elsevier, vol. 151(C), pages 192-203.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    2. Anicic, Obrad & Petković, Dalibor & Cvetkovic, Slavica, 2016. "Evaluation of wind turbine noise by soft computing methodologies: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1122-1128.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:170-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.