IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v166y2022ics1364032122005093.html
   My bibliography  Save this article

Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells

Author

Listed:
  • Xiang, Huimin
  • Liu, Pengyun
  • Ran, Ran
  • Wang, Wei
  • Zhou, Wei
  • Shao, Zongping

Abstract

Three-dimensional (3D) organic-inorganic halide perovskites have been regarded as promising sunlight harvesters for perovskite solar cells (PSCs). However, the intrinsic instability of 3D perovskites strongly limits their large-scale commercialization. Thus, the development of two-dimensional (2D) halide perovskites as light absorbers in PSCs has recently become a research hotspot, showing better stability than their 3D counterparts due to the introduction of bulky organic spacers. Among various 2D halide perovskites, Dion-Jacobson (DJ) phases exhibit a tighter connection between inorganic slabs than their Ruddlesden-Popper (RP) counterparts, leading to superior structural stability and charge transfer capability. Nevertheless, the power conversion efficiencies (PCEs) of DJ-PSCs are still inferior to their 3D counterparts. An in-time and comprehensive review of DJ perovskites as new-generation light absorbers for PSCs is presented by comparing of DJ perovskites and RP counterparts in terms of optical properties, crystal structure, charge transporting capability and energy level alignment. Furthermore, based on the summarized design criteria of halide perovskites for PSCs, several strategies are presented to improve the PCE and/or stability of DJ-PSCs. Finally, the remaining challenges and future directions for DJ-PSCs are presented and discussed. This review will provide guidelines for the fundamental understanding, design and fabrication of high-performance DJ-PSCs.

Suggested Citation

  • Xiang, Huimin & Liu, Pengyun & Ran, Ran & Wang, Wei & Zhou, Wei & Shao, Zongping, 2022. "Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:rensus:v:166:y:2022:i:c:s1364032122005093
    DOI: 10.1016/j.rser.2022.112614
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122005093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Konrad Domanski & Essa A. Alharbi & Anders Hagfeldt & Michael Grätzel & Wolfgang Tress, 2018. "Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells," Nature Energy, Nature, vol. 3(1), pages 61-67, January.
    2. Hsinhan Tsai & Wanyi Nie & Jean-Christophe Blancon & Constantinos C. Stoumpos & Reza Asadpour & Boris Harutyunyan & Amanda J. Neukirch & Rafael Verduzco & Jared J. Crochet & Sergei Tretiak & Laurent P, 2016. "High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells," Nature, Nature, vol. 536(7616), pages 312-316, August.
    3. Mingzhen Liu & Michael B. Johnston & Henry J. Snaith, 2013. "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, Nature, vol. 501(7467), pages 395-398, September.
    4. Xiaodong Li & Wenxiao Zhang & Ying-Chiao Wang & Wenjun Zhang & Hai-Qiao Wang & Junfeng Fang, 2018. "In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    5. Renjun Guo & Dan Han & Wei Chen & Linjie Dai & Kangyu Ji & Qiu Xiong & Saisai Li & Lennart K. Reb & Manuel A. Scheel & Shambhavi Pratap & Nian Li & Shanshan Yin & Tianxiao Xiao & Suzhe Liang & Anna Le, 2021. "Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen," Nature Energy, Nature, vol. 6(10), pages 977-986, October.
    6. Nengxu Li & Shuxia Tao & Yihua Chen & Xiuxiu Niu & Chidozie K. Onwudinanti & Chen Hu & Zhiwen Qiu & Ziqi Xu & Guanhaojie Zheng & Ligang Wang & Yu Zhang & Liang Li & Huifen Liu & Yingzhuo Lun & Jiawang, 2019. "Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells," Nature Energy, Nature, vol. 4(5), pages 408-415, May.
    7. Wu-Qiang Wu & Qi Wang & Yanjun Fang & Yuchuan Shao & Shi Tang & Yehao Deng & Haidong Lu & Ye Liu & Tao Li & Zhibin Yang & Alexei Gruverman & Jinsong Huang, 2018. "Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    8. Weijun Ke & Mercouri G. Kanatzidis, 2019. "Prospects for low-toxicity lead-free perovskite solar cells," Nature Communications, Nature, vol. 10(1), pages 1-4, December.
    9. Shuang Yang & Yun Wang & Porun Liu & Yi-Bing Cheng & Hui Jun Zhao & Hua Gui Yang, 2016. "Functionalization of perovskite thin films with moisture-tolerant molecules," Nature Energy, Nature, vol. 1(2), pages 1-7, February.
    10. Cheng Bi & Qi Wang & Yuchuan Shao & Yongbo Yuan & Zhengguo Xiao & Jinsong Huang, 2015. "Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    11. K.O. Brinkmann & J. Zhao & N. Pourdavoud & T. Becker & T. Hu & S. Olthof & K. Meerholz & L. Hoffmann & T. Gahlmann & R. Heiderhoff & M. F. Oszajca & N. A. Luechinger & D. Rogalla & Y. Chen & B. Cheng , 2017. "Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Jianying & Xiang, Huimin & Ran, Ran & Zhou, Wei & Wang, Wei & Shao, Zongping, 2024. "Fundamental understanding in the performance-limiting factors of Cs2AgBiBr6-based perovskite photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangfang Wang & Mubai Li & Qiushuang Tian & Riming Sun & Hongzhuang Ma & Hongze Wang & Jingxi Chang & Zihao Li & Haoyu Chen & Jiupeng Cao & Aifei Wang & Jingjin Dong & You Liu & Jinzheng Zhao & Ying C, 2023. "Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Abyl Muradov & Daria Frolushkina & Vadim Samusenkov & Gulsara Zhamanbayeva & Sebastian Kot, 2021. "Methods of Stability Control of Perovskite Solar Cells for High Efficiency," Energies, MDPI, vol. 14(10), pages 1-16, May.
    3. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).
    4. Habibi, Mehran & Zabihi, Fatemeh & Ahmadian-Yazdi, Mohammad Reza & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1012-1031.
    5. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Nian Li & Shambhavi Pratap & Volker Körstgens & Sundeep Vema & Lin Song & Suzhe Liang & Anton Davydok & Christina Krywka & Peter Müller-Buschbaum, 2022. "Mapping structure heterogeneities and visualizing moisture degradation of perovskite films with nano-focus WAXS," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Giovanni Landi & Sergio Pagano & Heinz Christoph Neitzert & Costantino Mauro & Carlo Barone, 2023. "Noise Spectroscopy: A Tool to Understand the Physics of Solar Cells," Energies, MDPI, vol. 16(3), pages 1-37, January.
    8. Thibault Lemercier & Lara Perrin & Emilie Planès & Solenn Berson & Lionel Flandin, 2020. "A Comparison of the Structure and Properties of Opaque and Semi-Transparent NIP/PIN-Type Scalable Perovskite Solar Cells," Energies, MDPI, vol. 13(15), pages 1-18, July.
    9. Shariatinia, Zahra, 2020. "Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Xinlong Wang & Zhiqin Ying & Jingming Zheng & Xin Li & Zhipeng Zhang & Chuanxiao Xiao & Ying Chen & Ming Wu & Zhenhai Yang & Jingsong Sun & Jia-Ru Xu & Jiang Sheng & Yuheng Zeng & Xi Yang & Guichuan X, 2023. "Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Yajie Yan & Yingguo Yang & Mingli Liang & Mohamed Abdellah & Tõnu Pullerits & Kaibo Zheng & Ziqi Liang, 2021. "Implementing an intermittent spin-coating strategy to enable bottom-up crystallization in layered halide perovskites," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    12. Mohamed M. H. Desoky & Matteo Bonomo & Roberto Buscaino & Andrea Fin & Guido Viscardi & Claudia Barolo & Pierluigi Quagliotto, 2021. "Dopant-Free All-Organic Small-Molecule HTMs for Perovskite Solar Cells: Concepts and Structure–Property Relationships," Energies, MDPI, vol. 14(8), pages 1-49, April.
    13. Yujie Luo & Kaikai Liu & Liu Yang & Wenjing Feng & Lingfang Zheng & Lina Shen & Yongbin Jin & Zheng Fang & Peiquan Song & Wanjia Tian & Peng Xu & Yuqing Li & Chengbo Tian & Liqiang Xie & Zhanhua Wei, 2023. "Dissolved-Cl2 triggered redox reaction enables high-performance perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Litvin, Aleksandr P. & Zhang, Xiaoyu & Berwick, Kevin & Fedorov, Anatoly V. & Zheng, Weitao & Baranov, Alexander V., 2020. "Carbon-based interlayers in perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    15. Chee, A. Kuan-Way, 2023. "On current technology for light absorber materials used in highly efficient industrial solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    17. Simone M. P. Meroni & Carys Worsley & Dimitrios Raptis & Trystan M. Watson, 2021. "Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications," Energies, MDPI, vol. 14(2), pages 1-37, January.
    18. Cheng-Chieh Lin & Shing-Jong Huang & Pei-Hao Wu & Tzu-Pei Chen & Chih-Ying Huang & Ying-Chiao Wang & Po-Tuan Chen & Denitsa Radeva & Ognyan Petrov & Vladimir M. Gelev & Raman Sankar & Chia-Chun Chen &, 2022. "Direct investigation of the reorientational dynamics of A-site cations in 2D organic-inorganic hybrid perovskite by solid-state NMR," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Alaa A. Zaky & Ahmed Fathy & Hegazy Rezk & Konstantina Gkini & Polycarpos Falaras & Amlak Abaza, 2021. "A Modified Triple-Diode Model Parameters Identification for Perovskite Solar Cells via Nature-Inspired Search Optimization Algorithms," Sustainability, MDPI, vol. 13(23), pages 1-22, November.
    20. Issa M. Aziz, 2023. "Synthesizing and characterization of Lead Halide Perovskite Nanocrystals solar cells from reused car batteries," Technium, Technium Science, vol. 10(1), pages 14-26.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:166:y:2022:i:c:s1364032122005093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.