IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8747.html
   My bibliography  Save this article

Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells

Author

Listed:
  • Cheng Bi

    (College of Engineering, University of Nebraska-Lincoln
    Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln)

  • Qi Wang

    (College of Engineering, University of Nebraska-Lincoln
    Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln)

  • Yuchuan Shao

    (College of Engineering, University of Nebraska-Lincoln
    Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln)

  • Yongbo Yuan

    (College of Engineering, University of Nebraska-Lincoln
    Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln)

  • Zhengguo Xiao

    (College of Engineering, University of Nebraska-Lincoln
    Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln)

  • Jinsong Huang

    (College of Engineering, University of Nebraska-Lincoln
    Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln)

Abstract

Large-aspect-ratio grains are needed in polycrystalline thin-film solar cells for reduced charge recombination at grain boundaries; however, the grain size in organolead trihalide perovskite (OTP) films is generally limited by the film thickness. Here we report the growth of OTP grains with high average aspect ratio of 2.3–7.9 on a wide range of non-wetting hole transport layers (HTLs), which increase nucleus spacing by suppressing heterogeneous nucleation and facilitate grain boundary migration in grain growth by imposing less drag force. The reduced grain boundary area and improved crystallinity dramatically reduce the charge recombination in OTP thin films to the level in OTP single crystals. Combining the high work function of several HTLs, a high stabilized device efficiency of 18.3% in low-temperature-processed planar-heterojunction OTP devices under 1 sun illumination is achieved. This simple method in enhancing OTP morphology paves the way for its application in other optoelectronic devices for enhanced performance.

Suggested Citation

  • Cheng Bi & Qi Wang & Yuchuan Shao & Yongbo Yuan & Zhengguo Xiao & Jinsong Huang, 2015. "Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8747
    DOI: 10.1038/ncomms8747
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8747
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang, Huimin & Liu, Pengyun & Ran, Ran & Wang, Wei & Zhou, Wei & Shao, Zongping, 2022. "Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    2. Thibault Lemercier & Lara Perrin & Emilie Planès & Solenn Berson & Lionel Flandin, 2020. "A Comparison of the Structure and Properties of Opaque and Semi-Transparent NIP/PIN-Type Scalable Perovskite Solar Cells," Energies, MDPI, vol. 13(15), pages 1-18, July.
    3. Chongqiu Yang & Xiaobiao Shan & Tao Xie, 2019. "Hysteresis Passivation in Planar Perovskite Solar Cells Utilizing Facile Chemical Vapor Deposition Process and PCBM Interlayer," Energies, MDPI, vol. 12(23), pages 1-13, November.
    4. Fangfang Wang & Mubai Li & Qiushuang Tian & Riming Sun & Hongzhuang Ma & Hongze Wang & Jingxi Chang & Zihao Li & Haoyu Chen & Jiupeng Cao & Aifei Wang & Jingjin Dong & You Liu & Jinzheng Zhao & Ying C, 2023. "Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Dongyang Li & Qing Lian & Tao Du & Ruijie Ma & Heng Liu & Qiong Liang & Yu Han & Guojun Mi & Ouwen Peng & Guihua Zhang & Wenbo Peng & Baomin Xu & Xinhui Lu & Kuan Liu & Jun Yin & Zhiwei Ren & Gang Li , 2024. "Co-adsorbed self-assembled monolayer enables high-performance perovskite and organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Yajie Yan & Yingguo Yang & Mingli Liang & Mohamed Abdellah & Tõnu Pullerits & Kaibo Zheng & Ziqi Liang, 2021. "Implementing an intermittent spin-coating strategy to enable bottom-up crystallization in layered halide perovskites," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Habibi, Mehran & Zabihi, Fatemeh & Ahmadian-Yazdi, Mohammad Reza & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1012-1031.
    8. Mohamed M. H. Desoky & Matteo Bonomo & Roberto Buscaino & Andrea Fin & Guido Viscardi & Claudia Barolo & Pierluigi Quagliotto, 2021. "Dopant-Free All-Organic Small-Molecule HTMs for Perovskite Solar Cells: Concepts and Structure–Property Relationships," Energies, MDPI, vol. 14(8), pages 1-49, April.
    9. Shoieb Shaik & Ziyou Zhou & Zhongliang Ouyang & Rebecca Han & Dawen Li, 2021. "Polymer Additive Assisted Fabrication of Compact and Ultra-Smooth Perovskite Thin Films with Fast Lamp Annealing," Energies, MDPI, vol. 14(9), pages 1-10, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.