IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i5p2378-2384.html
   My bibliography  Save this article

Evaluation of different diffuse radiation models for Indian stations and predicting the best fit model

Author

Listed:
  • Karakoti, Indira
  • Pande, Bimal
  • Pandey, Kavita

Abstract

In the present study, the non-linear solar radiation models for predicting the monthly average daily diffuse radiation are developed using the measured data on global radiation, diffuse radiation and sunshine hours for 12 locations of India. Statistical method is used to derive these correlations. The developed models are employed to estimate the monthly average daily diffuse radiation. The performance of these correlations is compared with existing model. Accuracy of developed relationships is also tested using statistical indicators viz. Percentage error (PE), root mean square error (RMSE), mean percentage error (MPE) and mean bias error (MBE). The study finds that these statistical parameters have very low values for the proposed models. A cubic correlation of diffuse coefficient with percent possible sunshine gives the best fit. The maximum values of RMSE, MPE and MBE for the proposed third order equation are 4.33%, 8.68% and -1.25% respectively while in the case of existing model these values are 13.28%, 13.39% and -3.83% respectively. Hence, it is possible to apply the cubic equation for the prediction of monthly mean daily diffuse radiation.

Suggested Citation

  • Karakoti, Indira & Pande, Bimal & Pandey, Kavita, 2011. "Evaluation of different diffuse radiation models for Indian stations and predicting the best fit model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2378-2384, June.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:5:p:2378-2384
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(11)00062-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mosalam Shaltout, M.A & Hassan, A.H & Fathy, A.M, 2001. "Study of the solar radiation over Menia," Renewable Energy, Elsevier, vol. 23(3), pages 621-639.
    2. Kalogirou, Soteris A., 2004. "Optimization of solar systems using artificial neural-networks and genetic algorithms," Applied Energy, Elsevier, vol. 77(4), pages 383-405, April.
    3. Noorian, Ali Mohammad & Moradi, Isaac & Kamali, Gholam Ali, 2008. "Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces," Renewable Energy, Elsevier, vol. 33(6), pages 1406-1412.
    4. Soares, Jacyra & Oliveira, Amauri P. & Boznar, Marija Zlata & Mlakar, Primoz & Escobedo, João F. & Machado, Antonio J., 2004. "Modeling hourly diffuse solar-radiation in the city of São Paulo using a neural-network technique," Applied Energy, Elsevier, vol. 79(2), pages 201-214, October.
    5. Wong, L. T. & Chow, W. K., 2001. "Solar radiation model," Applied Energy, Elsevier, vol. 69(3), pages 191-224, July.
    6. Elminir, Hamdy K. & Azzam, Yosry A. & Younes, Farag I., 2007. "Prediction of hourly and daily diffuse fraction using neural network, as compared to linear regression models," Energy, Elsevier, vol. 32(8), pages 1513-1523.
    7. Jacovides, C.P. & Tymvios, F.S. & Assimakopoulos, V.D. & Kaltsounides, N.A., 2006. "Comparative study of various correlations in estimating hourly diffuse fraction of global solar radiation," Renewable Energy, Elsevier, vol. 31(15), pages 2492-2504.
    8. Jiang, Yingni, 2009. "Estimation of monthly mean daily diffuse radiation in China," Applied Energy, Elsevier, vol. 86(9), pages 1458-1464, September.
    9. Paulescu, M. & Schlett, Z., 2004. "Performance assessment of global solar irradiation models under Romanian climate," Renewable Energy, Elsevier, vol. 29(5), pages 767-777.
    10. El-Sebaii, A.A. & Al-Hazmi, F.S. & Al-Ghamdi, A.A. & Yaghmour, S.J., 2010. "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," Applied Energy, Elsevier, vol. 87(2), pages 568-576, February.
    11. Boland, John & Ridley, Barbara & Brown, Bruce, 2008. "Models of diffuse solar radiation," Renewable Energy, Elsevier, vol. 33(4), pages 575-584.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shamshirband, Shahaboddin & Mohammadi, Kasra & Khorasanizadeh, Hossein & Yee, Por Lip & Lee, Malrey & Petković, Dalibor & Zalnezhad, Erfan, 2016. "Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 428-435.
    2. Jamil, Basharat & Akhtar, Naiem, 2017. "Estimation of diffuse solar radiation in humid-subtropical climatic region of India: Comparison of diffuse fraction and diffusion coefficient models," Energy, Elsevier, vol. 131(C), pages 149-164.
    3. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Ma, Xin & Bai, Hua, 2019. "Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 168-186.
    4. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2015. "Review and statistical analysis of different global solar radiation sunshine models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1869-1880.
    5. Karakoti, Indira & Das, Prasun Kumar & Singh, S.K., 2012. "Predicting monthly mean daily diffuse radiation for India," Applied Energy, Elsevier, vol. 91(1), pages 412-425.
    6. Khorasanizadeh, Hossein & Mohammadi, Kasra, 2016. "Diffuse solar radiation on a horizontal surface: Reviewing and categorizing the empirical models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 338-362.
    7. Anamika, & Peesapati, Rajagopal & Kumar, Niranjan, 2016. "Estimation of GSR to ascertain solar electricity cost in context of deregulated electricity markets," Renewable Energy, Elsevier, vol. 87(P1), pages 353-363.
    8. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    9. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparative analysis of diffuse solar radiation models based on sky-clearness index and sunshine period for humid-subtropical climatic region of India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 329-355.
    10. Wang, Lunche & Lu, Yunbo & Zou, Ling & Feng, Lan & Wei, Jing & Qin, Wenmin & Niu, Zigeng, 2019. "Prediction of diffuse solar radiation based on multiple variables in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 151-216.
    11. Mohammadi, Kasra & Shamshirband, Shahaboddin & Petković, Dalibor & Khorasanizadeh, Hossein, 2016. "Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: City of Kerman, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1570-1579.
    12. Bakirci, Kadir, 2015. "Models for the estimation of diffuse solar radiation for typical cities in Turkey," Energy, Elsevier, vol. 82(C), pages 827-838.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    2. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparative analysis of diffuse solar radiation models based on sky-clearness index and sunshine period for humid-subtropical climatic region of India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 329-355.
    3. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    4. Jamil, Basharat & Akhtar, Naiem, 2017. "Estimation of diffuse solar radiation in humid-subtropical climatic region of India: Comparison of diffuse fraction and diffusion coefficient models," Energy, Elsevier, vol. 131(C), pages 149-164.
    5. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2008. "Solar radiation modelling for the simulation of photovoltaic systems," Renewable Energy, Elsevier, vol. 33(5), pages 1109-1120.
    6. Seyed Abbas Mousavi Maleki & H. Hizam & Chandima Gomes, 2017. "Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited," Energies, MDPI, vol. 10(1), pages 1-28, January.
    7. Jawed Mustafa & Shahid Husain & Saeed Alqaed & Uzair Ali Khan & Basharat Jamil, 2022. "Performance of Two Variable Machine Learning Models to Forecast Monthly Mean Diffuse Solar Radiation across India under Various Climate Zones," Energies, MDPI, vol. 15(21), pages 1-32, October.
    8. Wang, Hong & Sun, Fubao & Wang, Tingting & Liu, Wenbin, 2018. "Estimation of daily and monthly diffuse radiation from measurements of global solar radiation a case study across China," Renewable Energy, Elsevier, vol. 126(C), pages 226-241.
    9. Sabzpooshani, Majid & Mohammadi, Kasra, 2014. "Establishing new empirical models for predicting monthly mean horizontal diffuse solar radiation in city of Isfahan, Iran," Energy, Elsevier, vol. 69(C), pages 571-577.
    10. Abreu, Edgar F.M. & Canhoto, Paulo & Costa, Maria João, 2019. "Prediction of diffuse horizontal irradiance using a new climate zone model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 28-42.
    11. El-Sebaii, A.A. & Al-Hazmi, F.S. & Al-Ghamdi, A.A. & Yaghmour, S.J., 2010. "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," Applied Energy, Elsevier, vol. 87(2), pages 568-576, February.
    12. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    13. Wang, Lunche & Lu, Yunbo & Zou, Ling & Feng, Lan & Wei, Jing & Qin, Wenmin & Niu, Zigeng, 2019. "Prediction of diffuse solar radiation based on multiple variables in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 151-216.
    14. Karakoti, Indira & Das, Prasun Kumar & Singh, S.K., 2012. "Predicting monthly mean daily diffuse radiation for India," Applied Energy, Elsevier, vol. 91(1), pages 412-425.
    15. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2016. "Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 246-260.
    16. Li, Huashan & Ma, Weibin & Wang, Xianlong & Lian, Yongwang, 2011. "Estimating monthly average daily diffuse solar radiation with multiple predictors: A case study," Renewable Energy, Elsevier, vol. 36(7), pages 1944-1948.
    17. Alam, Shah & Kaushik, S.C. & Garg, S.N., 2009. "Assessment of diffuse solar energy under general sky condition using artificial neural network," Applied Energy, Elsevier, vol. 86(4), pages 554-564, April.
    18. Kuo, Chia-Wei & Chang, Wen-Chey & Chang, Keh-Chin, 2014. "Modeling the hourly solar diffuse fraction in Taiwan," Renewable Energy, Elsevier, vol. 66(C), pages 56-61.
    19. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    20. Marques Filho, Edson P. & Oliveira, Amauri P. & Vita, Willian A. & Mesquita, Francisco L.L. & Codato, Georgia & Escobedo, João F. & Cassol, Mariana & França, José Ricardo A., 2016. "Global, diffuse and direct solar radiation at the surface in the city of Rio de Janeiro: Observational characterization and empirical modeling," Renewable Energy, Elsevier, vol. 91(C), pages 64-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:5:p:2378-2384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.