IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i6p1406-1412.html
   My bibliography  Save this article

Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces

Author

Listed:
  • Noorian, Ali Mohammad
  • Moradi, Isaac
  • Kamali, Gholam Ali

Abstract

This study evaluates the performance of 12 models to estimate hourly diffuse solar irradiation on inclined surfaces from those measured on horizontal surfaces. Total solar irradiation incident on a tilted surface consists of three components including: beam, diffuse and reflected from the ground. On a semi-hourly basis, the beam component can be calculated by the ratio of the incidence angle to the solar zenith angle. The reflected component has a small effect on calculations and may be calculated with an isotropic model. In contrast, models for estimating the diffuse component show major differences, which justify the validation study that this paper discusses. Twelve models were tested against recorded south- and west-facing slope irradiances at Karaj (35°55′N; 50°56′E), Iran. The following models were included: Badescu [Ba], Tian et al. [Ti], Perez et al. [P9], Reindl et al. [Re], Koronakis [Kr], Perez et al. [P8], Skartveit and Olseth [SO], Steven and Unsworth [SU], Hay [Ha], Klucher [Kl], Temps and Coulson [TC], and Liu and Jordan [LJ].

Suggested Citation

  • Noorian, Ali Mohammad & Moradi, Isaac & Kamali, Gholam Ali, 2008. "Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces," Renewable Energy, Elsevier, vol. 33(6), pages 1406-1412.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:6:p:1406-1412
    DOI: 10.1016/j.renene.2007.06.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107002509
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.06.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, C.L. & Chan, C.Y. & Chen, C.L., 2006. "An empirical approach to estimating monthly radiation on south-facing tilted planes for building application," Energy, Elsevier, vol. 31(14), pages 2940-2957.
    2. Badescu, V., 2002. "3D isotropic approximation for solar diffuse irradiance on tilted surfaces," Renewable Energy, Elsevier, vol. 26(2), pages 221-233.
    3. Nijmeh, Salem & Mamlook, Rustom, 2000. "Testing of two models for computing global solar radiation on tilted surfaces," Renewable Energy, Elsevier, vol. 20(1), pages 75-81.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pandey, Chanchal Kumar & Katiyar, A.K., 2011. "A comparative study of solar irradiation models on various inclined surfaces for India," Applied Energy, Elsevier, vol. 88(4), pages 1455-1459, April.
    2. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "A new neural network model for evaluating the performance of various hourly slope irradiation models: Implementation for the region of Athens," Renewable Energy, Elsevier, vol. 35(7), pages 1357-1362.
    3. Piotr Michalak, 2021. "Modelling of Solar Irradiance Incident on Building Envelopes in Polish Climatic Conditions: The Impact on Energy Performance Indicators of Residential Buildings," Energies, MDPI, vol. 14(14), pages 1-27, July.
    4. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Silva, C.A., 2023. "Experimental and numerical investigation of the influence of terrain slope on the performance of single-axis trackers," Applied Energy, Elsevier, vol. 348(C).
    5. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    6. Park, Hyo Seon & Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Jeong, Kwangbok, 2016. "A finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind," Applied Energy, Elsevier, vol. 179(C), pages 211-227.
    7. Manni, Mattia & Jouttijärvi, Sami & Ranta, Samuli & Miettunen, Kati & Lobaccaro, Gabriele, 2024. "Validation of model chains for global tilted irradiance on East-West vertical bifacial photovoltaics at high latitudes," Renewable Energy, Elsevier, vol. 220(C).
    8. Turgut Karahüseyin & Serkan Abbasoğlu, 2022. "Performance Loss Rates of a 1 MWp PV Plant with Various Tilt Angle, Orientation and Installed Environment in the Capital of Cyprus," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    9. Chang, Tian Pau, 2009. "Performance study on the east–west oriented single-axis tracked panel," Energy, Elsevier, vol. 34(10), pages 1530-1538.
    10. Riyad Mubarak & Martin Hofmann & Stefan Riechelmann & Gunther Seckmeyer, 2017. "Comparison of Modelled and Measured Tilted Solar Irradiance for Photovoltaic Applications," Energies, MDPI, vol. 10(11), pages 1-18, October.
    11. Smith, Duncan E. & Hughes, Michael D. & Borca-Tasciuc, Diana-Andra, 2022. "Towards a standard approach for annual energy production of concentrator-based building-integrated photovoltaics," Renewable Energy, Elsevier, vol. 186(C), pages 469-485.
    12. Pandey, Chanchal Kumar & Katiyar, A.K., 2009. "A note on diffuse solar radiation on a tilted surface," Energy, Elsevier, vol. 34(11), pages 1764-1769.
    13. Badescu, Viorel, 2006. "Optimum size and structure for solar energy collection systems," Energy, Elsevier, vol. 31(12), pages 1819-1835.
    14. Bayrakçı, Hilmi Cenk & Demircan, Cihan & Keçebaş, Ali, 2018. "The development of empirical models for estimating global solar radiation on horizontal surface: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2771-2782.
    15. Grigiante, M. & Mottes, F. & Zardi, D. & de Franceschi, M., 2011. "Experimental solar radiation measurements and their effectiveness in setting up a real-sky irradiance model," Renewable Energy, Elsevier, vol. 36(1), pages 1-8.
    16. Wang, Hong & Sun, Fubao & Wang, Tingting & Liu, Wenbin, 2018. "Estimation of daily and monthly diffuse radiation from measurements of global solar radiation a case study across China," Renewable Energy, Elsevier, vol. 126(C), pages 226-241.
    17. García, Ignacio & de Blas, Marian & Hernández, Begoña & Sáenz, Carlos & Torres, José Luis, 2021. "Diffuse irradiance on tilted planes in urban environments: Evaluation of models modified with sky and circumsolar view factors," Renewable Energy, Elsevier, vol. 180(C), pages 1194-1209.
    18. Kaddoura, Tarek O. & Ramli, Makbul A.M. & Al-Turki, Yusuf A., 2016. "On the estimation of the optimum tilt angle of PV panel in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 626-634.
    19. Zainali, Sebastian & Ma Lu, Silvia & Stridh, Bengt & Avelin, Anders & Amaducci, Stefano & Colauzzi, Michele & Campana, Pietro Elia, 2023. "Direct and diffuse shading factors modelling for the most representative agrivoltaic system layouts," Applied Energy, Elsevier, vol. 339(C).
    20. Arias-Rosales, Andrés & LeDuc, Philip R., 2020. "Comparing View Factor modeling frameworks for the estimation of incident solar energy," Applied Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:6:p:1406-1412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.