IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v91y2016icp64-74.html
   My bibliography  Save this article

Global, diffuse and direct solar radiation at the surface in the city of Rio de Janeiro: Observational characterization and empirical modeling

Author

Listed:
  • Marques Filho, Edson P.
  • Oliveira, Amauri P.
  • Vita, Willian A.
  • Mesquita, Francisco L.L.
  • Codato, Georgia
  • Escobedo, João F.
  • Cassol, Mariana
  • França, José Ricardo A.

Abstract

The city of Rio de Janeiro and others 18 cities compose the Metropolitan Area of Rio de Janeiro. The main objective of this work is to characterize observationally the diurnal and seasonal evolution of the solar radiation components in the city of Rio de Janeiro. The measurements of global and diffuse solar radiation and standard meteorological variables at the surface have been carried out regularly at the Geoscience Institute of Federal University of Rio de Janeiro since October of 2011. The microclimatic conditions show that the period 2011–2014 was warmer during most of the year and drier in summer and spring in comparison with climate normal. All solar radiation components present a well defined diurnal cycle with maximum at noon. The estimates of global and direct solar radiation indicate a great potential available for solar energy at the surface, particularly in summer. The behavior of the clearness index and diffuse solar radiation fraction is similar in summer and winter. The Angstrom formula represents properly the estimate of the monthly average daily value of global solar radiation. The sigmoid logistic function is statistically more significant in comparison with others correlation models to represent the diffuse fraction as a function clearness index.

Suggested Citation

  • Marques Filho, Edson P. & Oliveira, Amauri P. & Vita, Willian A. & Mesquita, Francisco L.L. & Codato, Georgia & Escobedo, João F. & Cassol, Mariana & França, José Ricardo A., 2016. "Global, diffuse and direct solar radiation at the surface in the city of Rio de Janeiro: Observational characterization and empirical modeling," Renewable Energy, Elsevier, vol. 91(C), pages 64-74.
  • Handle: RePEc:eee:renene:v:91:y:2016:i:c:p:64-74
    DOI: 10.1016/j.renene.2016.01.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116300404
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.01.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torres, J.L. & De Blas, M. & García, A. & de Francisco, A., 2010. "Comparative study of various models in estimating hourly diffuse solar irradiance," Renewable Energy, Elsevier, vol. 35(6), pages 1325-1332.
    2. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    3. Pottmaier, D. & Melo, C.R. & Sartor, M.N. & Kuester, S. & Amadio, T.M. & Fernandes, C.A.H. & Marinha, D. & Alarcon, O.E., 2013. "The Brazilian energy matrix: From a materials science and engineering perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 678-691.
    4. Rodríguez-Hidalgo, M.C. & Rodríguez-Aumente, P.A. & Lecuona, A. & Legrand, M. & Ventas, R., 2012. "Domestic hot water consumption vs. solar thermal energy storage: The optimum size of the storage tank," Applied Energy, Elsevier, vol. 97(C), pages 897-906.
    5. Soares, Jacyra & Oliveira, Amauri P. & Boznar, Marija Zlata & Mlakar, Primoz & Escobedo, João F. & Machado, Antonio J., 2004. "Modeling hourly diffuse solar-radiation in the city of São Paulo using a neural-network technique," Applied Energy, Elsevier, vol. 79(2), pages 201-214, October.
    6. Martins, F.R. & Rüther, R. & Pereira, E.B. & Abreu, S.L., 2008. "Solar energy scenarios in Brazil. Part two: Photovoltaics applications," Energy Policy, Elsevier, vol. 36(8), pages 2855-2867, August.
    7. Pereira, Marcio Giannini & Camacho, Cristiane Farias & Freitas, Marcos Aurélio Vasconcelos & Silva, Neilton Fidelis da, 2012. "The renewable energy market in Brazil: Current status and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3786-3802.
    8. Younes, S. & Claywell, R. & Muneer, T., 2005. "Quality control of solar radiation data: Present status and proposed new approaches," Energy, Elsevier, vol. 30(9), pages 1533-1549.
    9. Boland, John & Huang, Jing & Ridley, Barbara, 2013. "Decomposing global solar radiation into its direct and diffuse components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 749-756.
    10. Jacovides, C.P. & Tymvios, F.S. & Assimakopoulos, V.D. & Kaltsounides, N.A., 2006. "Comparative study of various correlations in estimating hourly diffuse fraction of global solar radiation," Renewable Energy, Elsevier, vol. 31(15), pages 2492-2504.
    11. Oliveira, Amauri P. & Escobedo, João F. & Machado, Antonio J. & Soares, Jacyra, 2002. "Correlation models of diffuse solar-radiation applied to the city of São Paulo, Brazil," Applied Energy, Elsevier, vol. 71(1), pages 59-73, January.
    12. Martins, F.R. & Pereira, E.B. & Silva, S.A.B. & Abreu, S.L. & Colle, Sergio, 2008. "Solar energy scenarios in Brazil, Part one: Resource assessment," Energy Policy, Elsevier, vol. 36(8), pages 2843-2854, August.
    13. Janjai, S. & Pankaew, P. & Laksanaboonsong, J., 2009. "A model for calculating hourly global solar radiation from satellite data in the tropics," Applied Energy, Elsevier, vol. 86(9), pages 1450-1457, September.
    14. Rüther, Ricardo & Zilles, Roberto, 2011. "Making the case for grid-connected photovoltaics in Brazil," Energy Policy, Elsevier, vol. 39(3), pages 1027-1030, March.
    15. Gueymard, Christian A., 2005. "Importance of atmospheric turbidity and associated uncertainties in solar radiation and luminous efficacy modelling," Energy, Elsevier, vol. 30(9), pages 1603-1621.
    16. Boland, John & Ridley, Barbara & Brown, Bruce, 2008. "Models of diffuse solar radiation," Renewable Energy, Elsevier, vol. 33(4), pages 575-584.
    17. Ridley, Barbara & Boland, John & Lauret, Philippe, 2010. "Modelling of diffuse solar fraction with multiple predictors," Renewable Energy, Elsevier, vol. 35(2), pages 478-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jawed Mustafa & Shahid Husain & Saeed Alqaed & Uzair Ali Khan & Basharat Jamil, 2022. "Performance of Two Variable Machine Learning Models to Forecast Monthly Mean Diffuse Solar Radiation across India under Various Climate Zones," Energies, MDPI, vol. 15(21), pages 1-32, October.
    2. Yin, Kaili & Zhang, Xiaojing & Xie, Jingchao & Hao, Ziyang & Xiao, Guofeng & Liu, Jiaping, 2023. "Modeling hourly solar diffuse fraction on a horizontal surface based on sky conditions clustering," Energy, Elsevier, vol. 272(C).
    3. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    4. Božnar, Marija Zlata & Grašič, Boštjan & Oliveira, Amauri Pereira de & Soares, Jacyra & Mlakar, Primož, 2017. "Spatially transferable regional model for half-hourly values of diffuse solar radiation for general sky conditions based on perceptron artificial neural networks," Renewable Energy, Elsevier, vol. 103(C), pages 794-810.
    5. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparative analysis of diffuse solar radiation models based on sky-clearness index and sunshine period for humid-subtropical climatic region of India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 329-355.
    6. Abreu, Edgar F.M. & Canhoto, Paulo & Costa, Maria João, 2019. "Prediction of diffuse horizontal irradiance using a new climate zone model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 28-42.
    7. Chen, Ji-Long & He, Lei & Chen, Qiao & Lv, Ming-Quan & Zhu, Hong-Lin & Wen, Zhao-Fei & Wu, Sheng-Jun, 2019. "Study of monthly mean daily diffuse and direct beam radiation estimation with MODIS atmospheric product," Renewable Energy, Elsevier, vol. 132(C), pages 221-232.
    8. Bouchouicha, Kada & Hassan, Muhammed A. & Bailek, Nadjem & Aoun, Nouar, 2019. "Estimating the global solar irradiation and optimizing the error estimates under Algerian desert climate," Renewable Energy, Elsevier, vol. 139(C), pages 844-858.
    9. Zhiyong Tian & Bengt Perers & Simon Furbo & Jianhua Fan & Jie Deng & Janne Dragsted, 2018. "A Comprehensive Approach for Modelling Horizontal Diffuse Radiation, Direct Normal Irradiance and Total Tilted Solar Radiation Based on Global Radiation under Danish Climate Conditions," Energies, MDPI, vol. 11(5), pages 1-19, May.
    10. Alami Merrouni, Ahmed & Elwali Elalaoui, Fakhreddine & Mezrhab, Ahmed & Mezrhab, Abdelhamid & Ghennioui, Abdellatif, 2018. "Large scale PV sites selection by combining GIS and Analytical Hierarchy Process. Case study: Eastern Morocco," Renewable Energy, Elsevier, vol. 119(C), pages 863-873.
    11. Bey, M. & Hamidat, A. & Benyoucef, B. & Nacer, T., 2016. "Viability study of the use of grid connected photovoltaic system in agriculture: Case of Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 333-345.
    12. Liu, Peirong & Tong, Xiaojuan & Zhang, Jinsong & Meng, Ping & Li, Jun & Zhang, Jingru, 2020. "Estimation of half-hourly diffuse solar radiation over a mixed plantation in north China," Renewable Energy, Elsevier, vol. 149(C), pages 1360-1369.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    2. Lou, Siwei & Li, Danny H.W. & Lam, Joseph C. & Chan, Wilco W.H., 2016. "Prediction of diffuse solar irradiance using machine learning and multivariable regression," Applied Energy, Elsevier, vol. 181(C), pages 367-374.
    3. Jamil, Basharat & Akhtar, Naiem, 2017. "Estimation of diffuse solar radiation in humid-subtropical climatic region of India: Comparison of diffuse fraction and diffusion coefficient models," Energy, Elsevier, vol. 131(C), pages 149-164.
    4. Liu, Peirong & Tong, Xiaojuan & Zhang, Jinsong & Meng, Ping & Li, Jun & Zhang, Jingru, 2020. "Estimation of half-hourly diffuse solar radiation over a mixed plantation in north China," Renewable Energy, Elsevier, vol. 149(C), pages 1360-1369.
    5. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparative analysis of diffuse solar radiation models based on sky-clearness index and sunshine period for humid-subtropical climatic region of India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 329-355.
    6. Madeleine McPherson & Theofilos Sotiropoulos-Michalakakos & LD Danny Harvey & Bryan Karney, 2017. "An Open-Access Web-Based Tool to Access Global, Hourly Wind and Solar PV Generation Time-Series Derived from the MERRA Reanalysis Dataset," Energies, MDPI, vol. 10(7), pages 1-14, July.
    7. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    8. Lemos, Leonardo F.L. & Starke, Allan R. & Boland, John & Cardemil, José M. & Machado, Rubinei D. & Colle, Sergio, 2017. "Assessment of solar radiation components in Brazil using the BRL model," Renewable Energy, Elsevier, vol. 108(C), pages 569-580.
    9. Božnar, Marija Zlata & Grašič, Boštjan & Oliveira, Amauri Pereira de & Soares, Jacyra & Mlakar, Primož, 2017. "Spatially transferable regional model for half-hourly values of diffuse solar radiation for general sky conditions based on perceptron artificial neural networks," Renewable Energy, Elsevier, vol. 103(C), pages 794-810.
    10. Kuo, Chia-Wei & Chang, Wen-Chey & Chang, Keh-Chin, 2014. "Modeling the hourly solar diffuse fraction in Taiwan," Renewable Energy, Elsevier, vol. 66(C), pages 56-61.
    11. Every, Jeremy P. & Li, Li & Dorrell, David G., 2020. "Köppen-Geiger climate classification adjustment of the BRL diffuse irradiation model for Australian locations," Renewable Energy, Elsevier, vol. 147(P1), pages 2453-2469.
    12. Abreu, Edgar F.M. & Canhoto, Paulo & Costa, Maria João, 2019. "Prediction of diffuse horizontal irradiance using a new climate zone model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 28-42.
    13. El-Sebaii, A.A. & Al-Hazmi, F.S. & Al-Ghamdi, A.A. & Yaghmour, S.J., 2010. "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," Applied Energy, Elsevier, vol. 87(2), pages 568-576, February.
    14. Yin, Kaili & Zhang, Xiaojing & Xie, Jingchao & Hao, Ziyang & Xiao, Guofeng & Liu, Jiaping, 2023. "Modeling hourly solar diffuse fraction on a horizontal surface based on sky conditions clustering," Energy, Elsevier, vol. 272(C).
    15. Torres, J.L. & De Blas, M. & García, A. & de Francisco, A., 2010. "Comparative study of various models in estimating hourly diffuse solar irradiance," Renewable Energy, Elsevier, vol. 35(6), pages 1325-1332.
    16. Lin, Chun-Tin & Chang, Keh-Chin & Chung, Kung-Ming, 2023. "Re-modeling the solar diffuse fraction in Taiwan on basis of a typical-meteorological-year data," Renewable Energy, Elsevier, vol. 204(C), pages 823-835.
    17. Liu, Yujun & Yao, Ling & Jiang, Hou & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2022. "Spatial estimation of the optimum PV tilt angles in China by incorporating ground with satellite data," Renewable Energy, Elsevier, vol. 189(C), pages 1249-1258.
    18. Oh, Myeongchan & Kim, Chang Ki & Kim, Boyoung & Yun, Changyeol & Kim, Jin-Young & Kang, Yongheack & Kim, Hyun-Goo, 2022. "Analysis of minute-scale variability for enhanced separation of direct and diffuse solar irradiance components using machine learning algorithms," Energy, Elsevier, vol. 241(C).
    19. Martin Hofmann & Gunther Seckmeyer, 2017. "A New Model for Estimating the Diffuse Fraction of Solar Irradiance for Photovoltaic System Simulations," Energies, MDPI, vol. 10(2), pages 1-21, February.
    20. Huang, Kuo-Tsang, 2020. "Identifying a suitable hourly solar diffuse fraction model to generate the typical meteorological year for building energy simulation application," Renewable Energy, Elsevier, vol. 157(C), pages 1102-1115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:91:y:2016:i:c:p:64-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.