IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i3p1556-1566.html
   My bibliography  Save this article

Influence of the input layer signals of ANNs on wind power estimation for a target site: A case study

Author

Listed:
  • Velázquez, Sergio
  • Carta, José A.
  • Matías, J.M.

Abstract

In the scientific literature concerning renewable energies there have been proposals for the use of Artificial Neural Networks (ANNs) as a tool to estimate the mean wind speed at a target station for which only incomplete data series are available. In general terms, the wind speeds recorded at neighbouring reference stations are used as signals of the input layer of multilayer perceptron (MLP) architectures. An analysis is undertaken in this paper of the extent to which estimation of the wind speed, the wind power density and the power output of an installed wind turbine at a target site is affected by the number of reference stations, the degree of correlation between the wind speeds of the reference stations and the target station, the wind direction and the manner in which the direction signal is introduced into the input layer. For the purposes of this study mean hourly wind speeds and directions were used which had been recorded at twenty two weather stations located in the Canary Archipelago (Spain) in 2002 and 2006. The power-wind speed characteristic curves of five wind turbines of different rated power were also used. The MLP architectures were trained using the backpropagation algorithm. Amongst other conclusions reached with the tests performed with the set of data not used in the training nor in the validation of the models is that the estimation errors tend to decrease as the number of reference stations used increases, independently of the existing correlation coefficient values between the reference stations and the candidate station. It was also observed that if input signals of angular wind direction and wind speed are used then the number of reference stations required to achieve a certain decrease in the error is lower than the number required if only wind speed input signals are used. By using multiple reference stations with input signals of angular wind direction and speed, error reductions have been achieved for some stations in the estimation of the wind power density and the power output of wind turbines, with respect to the case of a single reference station and identical input signals, of 75% and 62%, respectively.

Suggested Citation

  • Velázquez, Sergio & Carta, José A. & Matías, J.M., 2011. "Influence of the input layer signals of ANNs on wind power estimation for a target site: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1556-1566, April.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:3:p:1556-1566
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00405-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fadare, D.A., 2010. "The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria," Applied Energy, Elsevier, vol. 87(3), pages 934-942, March.
    2. Monfared, Mohammad & Rastegar, Hasan & Kojabadi, Hossein Madadi, 2009. "A new strategy for wind speed forecasting using artificial intelligent methods," Renewable Energy, Elsevier, vol. 34(3), pages 845-848.
    3. Carolin Mabel, M. & Fernandez, E., 2008. "Analysis of wind power generation and prediction using ANN: A case study," Renewable Energy, Elsevier, vol. 33(5), pages 986-992.
    4. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    5. López, P. & Velo, R. & Maseda, F., 2008. "Effect of direction on wind speed estimation in complex terrain using neural networks," Renewable Energy, Elsevier, vol. 33(10), pages 2266-2272.
    6. Jose Antonio Carta and Jaime Gonzalez, 2001. "Self-Sufficient Energy Supply for Isolated Communities: Wind-Diesel Systems in the Canary Islands," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 115-146.
    7. Bilgili, Mehmet & Sahin, Besir & Yasar, Abdulkadir, 2007. "Application of artificial neural networks for the wind speed prediction of target station using reference stations data," Renewable Energy, Elsevier, vol. 32(14), pages 2350-2360.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yun & Wang, Haibo & Srinivasan, Dipti & Hu, Qinghua, 2019. "Robust functional regression for wind speed forecasting based on Sparse Bayesian learning," Renewable Energy, Elsevier, vol. 132(C), pages 43-60.
    2. Carta, José A. & Cabrera, Pedro & Matías, José M. & Castellano, Fernando, 2015. "Comparison of feature selection methods using ANNs in MCP-wind speed methods. A case study," Applied Energy, Elsevier, vol. 158(C), pages 490-507.
    3. Xuejiao Ma & Dandan Liu, 2016. "Comparative Study of Hybrid Models Based on a Series of Optimization Algorithms and Their Application in Energy System Forecasting," Energies, MDPI, vol. 9(8), pages 1-34, August.
    4. Carta, José A. & Velázquez, Sergio & Cabrera, Pedro, 2013. "A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 362-400.
    5. Weekes, S.M. & Tomlin, A.S., 2014. "Comparison between the bivariate Weibull probability approach and linear regression for assessment of the long-term wind energy resource using MCP," Renewable Energy, Elsevier, vol. 68(C), pages 529-539.
    6. Lahouar, A. & Ben Hadj Slama, J., 2017. "Hour-ahead wind power forecast based on random forests," Renewable Energy, Elsevier, vol. 109(C), pages 529-541.
    7. Carta, José A. & Cabrera, Pedro, 2021. "Optimal sizing of stand-alone wind-powered seawater reverse osmosis plants without use of massive energy storage," Applied Energy, Elsevier, vol. 304(C).
    8. Hanifi, Shahram & Zare-Behtash, Hossein & Cammarano, Andrea & Lotfian, Saeid, 2023. "Offshore wind power forecasting based on WPD and optimised deep learning methods," Renewable Energy, Elsevier, vol. 218(C).
    9. Dinler, Ali, 2013. "A new low-correlation MCP (measure-correlate-predict) method for wind energy forecasting," Energy, Elsevier, vol. 63(C), pages 152-160.
    10. Saira Al-Zadjali & Ahmed Al Maashri & Amer Al-Hinai & Rashid Al Abri & Swaroop Gajare & Sultan Al Yahyai & Mostafa Bakhtvar, 2021. "A Fast and Accurate Wind Speed and Direction Nowcasting Model for Renewable Energy Management Systems," Energies, MDPI, vol. 14(23), pages 1-20, November.
    11. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    12. Carta, José A. & Velázquez, Sergio, 2011. "A new probabilistic method to estimate the long-term wind speed characteristics at a potential wind energy conversion site," Energy, Elsevier, vol. 36(5), pages 2671-2685.
    13. Jung, Sungmoon & Kwon, Soon-Duck, 2013. "Weighted error functions in artificial neural networks for improved wind energy potential estimation," Applied Energy, Elsevier, vol. 111(C), pages 778-790.
    14. Shahram Hanifi & Xiaolei Liu & Zi Lin & Saeid Lotfian, 2020. "A Critical Review of Wind Power Forecasting Methods—Past, Present and Future," Energies, MDPI, vol. 13(15), pages 1-24, July.
    15. Wang, Jianzhou & Yang, Wendong & Du, Pei & Li, Yifan, 2018. "Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system," Energy, Elsevier, vol. 148(C), pages 59-78.
    16. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    17. Yechi Zhang & Jianzhou Wang & Haiyan Lu, 2019. "Research and Application of a Novel Combined Model Based on Multiobjective Optimization for Multistep-Ahead Electric Load Forecasting," Energies, MDPI, vol. 12(10), pages 1-27, May.
    18. Díaz, Santiago & Carta, José A. & Matías, José M., 2018. "Performance assessment of five MCP models proposed for the estimation of long-term wind turbine power outputs at a target site using three machine learning techniques," Applied Energy, Elsevier, vol. 209(C), pages 455-477.
    19. Troncoso, A. & Salcedo-Sanz, S. & Casanova-Mateo, C. & Riquelme, J.C. & Prieto, L., 2015. "Local models-based regression trees for very short-term wind speed prediction," Renewable Energy, Elsevier, vol. 81(C), pages 589-598.
    20. Velázquez, Sergio & Carta, José A. & Matías, J.M., 2011. "Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: A case study in the Canary Islands," Applied Energy, Elsevier, vol. 88(11), pages 3869-3881.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    2. Velázquez, Sergio & Carta, José A. & Matías, J.M., 2011. "Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: A case study in the Canary Islands," Applied Energy, Elsevier, vol. 88(11), pages 3869-3881.
    3. Carta, José A. & Velázquez, Sergio & Cabrera, Pedro, 2013. "A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 362-400.
    4. Carta, José A. & Cabrera, Pedro & Matías, José M. & Castellano, Fernando, 2015. "Comparison of feature selection methods using ANNs in MCP-wind speed methods. A case study," Applied Energy, Elsevier, vol. 158(C), pages 490-507.
    5. Jung, Sungmoon & Kwon, Soon-Duck, 2013. "Weighted error functions in artificial neural networks for improved wind energy potential estimation," Applied Energy, Elsevier, vol. 111(C), pages 778-790.
    6. Ramasamy, P. & Chandel, S.S. & Yadav, Amit Kumar, 2015. "Wind speed prediction in the mountainous region of India using an artificial neural network model," Renewable Energy, Elsevier, vol. 80(C), pages 338-347.
    7. Hu, Jianming & Wang, Jianzhou & Zeng, Guowei, 2013. "A hybrid forecasting approach applied to wind speed time series," Renewable Energy, Elsevier, vol. 60(C), pages 185-194.
    8. Koo, Junmo & Han, Gwon Deok & Choi, Hyung Jong & Shim, Joon Hyung, 2015. "Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea," Energy, Elsevier, vol. 93(P2), pages 1296-1302.
    9. Cadenas, Erasmo & Rivera, Wilfrido, 2010. "Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model," Renewable Energy, Elsevier, vol. 35(12), pages 2732-2738.
    10. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    11. Shamshirband, Shahaboddin & Keivani, Afram & Mohammadi, Kasra & Lee, Malrey & Hamid, Siti Hafizah Abd & Petkovic, Dalibor, 2016. "Assessing the proficiency of adaptive neuro-fuzzy system to estimate wind power density: Case study of Aligoodarz, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 429-435.
    12. Dinler, Ali, 2013. "A new low-correlation MCP (measure-correlate-predict) method for wind energy forecasting," Energy, Elsevier, vol. 63(C), pages 152-160.
    13. Chen, Kuilin & Yu, Jie, 2014. "Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach," Applied Energy, Elsevier, vol. 113(C), pages 690-705.
    14. Philippopoulos, Kostas & Deligiorgi, Despina, 2012. "Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography," Renewable Energy, Elsevier, vol. 38(1), pages 75-82.
    15. Khaled, Mohamed & Ibrahim, Mostafa M. & Abdel Hamed, Hesham E. & AbdelGwad, Ahmed F., 2019. "Investigation of a small Horizontal–Axis wind turbine performance with and without winglet," Energy, Elsevier, vol. 187(C).
    16. Ouammi, Ahmed & Zejli, Driss & Dagdougui, Hanane & Benchrifa, Rachid, 2012. "Artificial neural network analysis of Moroccan solar potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4876-4889.
    17. Zhang, Wenyu & Wu, Jie & Wang, Jianzhou & Zhao, Weigang & Shen, Lin, 2012. "Performance analysis of four modified approaches for wind speed forecasting," Applied Energy, Elsevier, vol. 99(C), pages 324-333.
    18. Salcedo-Sanz, Sancho & Ángel M. Pérez-Bellido, & Ortiz-García, Emilio G. & Portilla-Figueras, Antonio & Prieto, Luis & Paredes, Daniel, 2009. "Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction," Renewable Energy, Elsevier, vol. 34(6), pages 1451-1457.
    19. Jiani Heng & Chen Wang & Xuejing Zhao & Liye Xiao, 2016. "Research and Application Based on Adaptive Boosting Strategy and Modified CGFPA Algorithm: A Case Study for Wind Speed Forecasting," Sustainability, MDPI, vol. 8(3), pages 1-25, March.
    20. Mifsud, Michael D. & Sant, Tonio & Farrugia, Robert N., 2018. "A comparison of Measure-Correlate-Predict Methodologies using LiDAR as a candidate site measurement device for the Mediterranean Island of Malta," Renewable Energy, Elsevier, vol. 127(C), pages 947-959.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:3:p:1556-1566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.