IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp529-539.html
   My bibliography  Save this article

Comparison between the bivariate Weibull probability approach and linear regression for assessment of the long-term wind energy resource using MCP

Author

Listed:
  • Weekes, S.M.
  • Tomlin, A.S.

Abstract

A detailed investigation of a measure–correlate–predict (MCP) approach based on the bivariate Weibull (BW) probability distribution of wind speeds at pairs of correlated sites has been conducted. Since wind speeds are typically assumed to follow Weibull distributions, this approach has a stronger theoretical basis than widely used regression MCP techniques. Building on previous work that applied the technique to artificially generated wind data, we have used long-term (11 year) wind observations at 22 pairs of correlated UK sites. Additionally, 22 artificial wind data sets were generated from ideal BW distributions modelled on the observed data at the 22 site pairs. Comparison of the fitting efficiency revealed that significantly longer data periods were required to accurately extract the BW distribution parameters from the observed data, compared to artificial wind data, due to seasonal variations. The overall performance of the BW approach was compared to standard regression MCP techniques for the prediction of the 10 year wind resource using both observed and artificially generated wind data at the 22 site pairs for multiple short-term measurement periods of 1–12 months. Prediction errors were quantified by comparing the predicted and observed values of mean wind speed, mean wind power density, Weibull shape factor and standard deviation of wind speeds at each site. Using the artificial wind data, the BW approach outperformed the regression approaches for all measurement periods. When applied to the real wind speed observations however, the performance of the BW approach was comparable to the regression approaches when using a full 12 month measurement period and generally worse than the regression approaches for shorter data periods. This suggests that real wind observations at correlated sites may differ from ideal BW distributions and hence regression approaches, which require less fitting parameters, may be more appropriate, particularly when using short measurement periods.

Suggested Citation

  • Weekes, S.M. & Tomlin, A.S., 2014. "Comparison between the bivariate Weibull probability approach and linear regression for assessment of the long-term wind energy resource using MCP," Renewable Energy, Elsevier, vol. 68(C), pages 529-539.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:529-539
    DOI: 10.1016/j.renene.2014.02.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114001013
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.02.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lackner, Matthew A. & Rogers, Anthony L. & Manwell, James F., 2008. "The round robin site assessment method: A new approach to wind energy site assessment," Renewable Energy, Elsevier, vol. 33(9), pages 2019-2026.
    2. Monfared, Mohammad & Rastegar, Hasan & Kojabadi, Hossein Madadi, 2009. "A new strategy for wind speed forecasting using artificial intelligent methods," Renewable Energy, Elsevier, vol. 34(3), pages 845-848.
    3. Jye Lu & Gouri Bhattacharyya, 1990. "Some new constructions of bivariate Weibull models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(3), pages 543-559, September.
    4. Weekes, S.M. & Tomlin, A.S., 2013. "Evaluation of a semi-empirical model for predicting the wind energy resource relevant to small-scale wind turbines," Renewable Energy, Elsevier, vol. 50(C), pages 280-288.
    5. Carta, José A. & Velázquez, Sergio, 2011. "A new probabilistic method to estimate the long-term wind speed characteristics at a potential wind energy conversion site," Energy, Elsevier, vol. 36(5), pages 2671-2685.
    6. Velázquez, Sergio & Carta, José A. & Matías, J.M., 2011. "Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: A case study in the Canary Islands," Applied Energy, Elsevier, vol. 88(11), pages 3869-3881.
    7. Lee, Larry, 1979. "Multivariate distributions having Weibull properties," Journal of Multivariate Analysis, Elsevier, vol. 9(2), pages 267-277, June.
    8. Weekes, S.M. & Tomlin, A.S., 2014. "Data efficient measure-correlate-predict approaches to wind resource assessment for small-scale wind energy," Renewable Energy, Elsevier, vol. 63(C), pages 162-171.
    9. Carta, José A. & Velázquez, Sergio & Cabrera, Pedro, 2013. "A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 362-400.
    10. Velázquez, Sergio & Carta, José A. & Matías, J.M., 2011. "Influence of the input layer signals of ANNs on wind power estimation for a target site: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1556-1566, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Liyan & Liu, Yang & Lin, Qiang & Huang, Gubo, 2015. "Valuing carbon assets for high-tech with application to the wind energy industry," Energy Policy, Elsevier, vol. 87(C), pages 347-358.
    2. Pham, An & Jin, Tongdan & Novoa, Clara & Qin, Jin, 2019. "A multi-site production and microgrid planning model for net-zero energy operations," International Journal of Production Economics, Elsevier, vol. 218(C), pages 260-274.
    3. José V. P. Miguel & Eliane A. Fadigas & Ildo L. Sauer, 2019. "The Influence of the Wind Measurement Campaign Duration on a Measure-Correlate-Predict (MCP)-Based Wind Resource Assessment," Energies, MDPI, vol. 12(19), pages 1-15, September.
    4. Kang, Dongbum & Ko, Kyungnam & Huh, Jongchul, 2015. "Determination of extreme wind values using the Gumbel distribution," Energy, Elsevier, vol. 86(C), pages 51-58.
    5. Weekes, S.M. & Tomlin, A.S. & Vosper, S.B. & Skea, A.K. & Gallani, M.L. & Standen, J.J., 2015. "Long-term wind resource assessment for small and medium-scale turbines using operational forecast data and measure–correlate–predict," Renewable Energy, Elsevier, vol. 81(C), pages 760-769.
    6. Baseer, M.A. & Meyer, J.P. & Rehman, S. & Md. Mahbub Alam, & Al-Hadhrami, L.M. & Lashin, A., 2016. "Performance evaluation of cup-anemometers and wind speed characteristics analysis," Renewable Energy, Elsevier, vol. 86(C), pages 733-744.
    7. Wen-Ko Hsu & Chung-Kee Yeh, 2021. "Offshore Wind Potential of West Central Taiwan: A Case Study," Energies, MDPI, vol. 14(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carta, José A. & Cabrera, Pedro & Matías, José M. & Castellano, Fernando, 2015. "Comparison of feature selection methods using ANNs in MCP-wind speed methods. A case study," Applied Energy, Elsevier, vol. 158(C), pages 490-507.
    2. Weekes, S.M. & Tomlin, A.S. & Vosper, S.B. & Skea, A.K. & Gallani, M.L. & Standen, J.J., 2015. "Long-term wind resource assessment for small and medium-scale turbines using operational forecast data and measure–correlate–predict," Renewable Energy, Elsevier, vol. 81(C), pages 760-769.
    3. Mifsud, Michael D. & Sant, Tonio & Farrugia, Robert N., 2018. "A comparison of Measure-Correlate-Predict Methodologies using LiDAR as a candidate site measurement device for the Mediterranean Island of Malta," Renewable Energy, Elsevier, vol. 127(C), pages 947-959.
    4. Troncoso, A. & Salcedo-Sanz, S. & Casanova-Mateo, C. & Riquelme, J.C. & Prieto, L., 2015. "Local models-based regression trees for very short-term wind speed prediction," Renewable Energy, Elsevier, vol. 81(C), pages 589-598.
    5. José V. P. Miguel & Eliane A. Fadigas & Ildo L. Sauer, 2019. "The Influence of the Wind Measurement Campaign Duration on a Measure-Correlate-Predict (MCP)-Based Wind Resource Assessment," Energies, MDPI, vol. 12(19), pages 1-15, September.
    6. Carta, José A. & Velázquez, Sergio & Cabrera, Pedro, 2013. "A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 362-400.
    7. Dinler, Ali, 2013. "A new low-correlation MCP (measure-correlate-predict) method for wind energy forecasting," Energy, Elsevier, vol. 63(C), pages 152-160.
    8. Koo, Junmo & Han, Gwon Deok & Choi, Hyung Jong & Shim, Joon Hyung, 2015. "Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea," Energy, Elsevier, vol. 93(P2), pages 1296-1302.
    9. Velázquez, Sergio & Carta, José A. & Matías, J.M., 2011. "Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: A case study in the Canary Islands," Applied Energy, Elsevier, vol. 88(11), pages 3869-3881.
    10. Díaz, Santiago & Carta, José A. & Matías, José M., 2018. "Performance assessment of five MCP models proposed for the estimation of long-term wind turbine power outputs at a target site using three machine learning techniques," Applied Energy, Elsevier, vol. 209(C), pages 455-477.
    11. Woochul Nam & Ki-Yong Oh, 2020. "Mutually Complementary Measure-Correlate-Predict Method for Enhanced Long-Term Wind-Resource Assessment," Mathematics, MDPI, vol. 8(10), pages 1-20, October.
    12. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    13. Weekes, S.M. & Tomlin, A.S., 2014. "Data efficient measure-correlate-predict approaches to wind resource assessment for small-scale wind energy," Renewable Energy, Elsevier, vol. 63(C), pages 162-171.
    14. Xiao Liu & Xu Lai & Jin Zou, 2017. "A New MCP Method of Wind Speed Temporal Interpolation and Extrapolation Considering Wind Speed Mixed Uncertainty," Energies, MDPI, vol. 10(8), pages 1-21, August.
    15. Daniel Villanueva & Andrés Feijóo & José L. Pazos, 2013. "Multivariate Weibull Distribution for Wind Speed and Wind Power Behavior Assessment," Resources, MDPI, vol. 2(3), pages 1-15, September.
    16. Kang, Dongbum & Ko, Kyungnam & Huh, Jongchul, 2015. "Determination of extreme wind values using the Gumbel distribution," Energy, Elsevier, vol. 86(C), pages 51-58.
    17. Carta, José A. & Cabrera, Pedro, 2021. "Optimal sizing of stand-alone wind-powered seawater reverse osmosis plants without use of massive energy storage," Applied Energy, Elsevier, vol. 304(C).
    18. Wen-Ko Hsu & Chung-Kee Yeh, 2021. "Offshore Wind Potential of West Central Taiwan: A Case Study," Energies, MDPI, vol. 14(12), pages 1-20, June.
    19. Patra, Kaushik & Dey, Dipak K., 1999. "A multivariate mixture of Weibull distributions in reliability modeling," Statistics & Probability Letters, Elsevier, vol. 45(3), pages 225-235, November.
    20. Zhang, Jie & Draxl, Caroline & Hopson, Thomas & Monache, Luca Delle & Vanvyve, Emilie & Hodge, Bri-Mathias, 2015. "Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods," Applied Energy, Elsevier, vol. 156(C), pages 528-541.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:529-539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.