Author
Listed:
- Du, Ruoyun
- Chen, Hongfei
- Yu, Min
- Li, Wanying
- Niu, Dongxiao
- Wang, Keke
- Zhang, Zuozhong
Abstract
The accuracy of offshore wind power forecasting (OWPF) is the basis for guaranteeing the safe dispatch and economic operation of power systems, which can reduce the technical and economic risks faced by power market participants. Combining the theoretical approaches of data space and deep learning, this study proposes a hybrid short-term OWPF framework based on the integrated consideration of spatial and temporal correlations of regional field clusters in the data space and the 3DTCN-CBAM-LSTM model. Firstly, other offshore wind farms with spatio-temporal correlation with the target offshore wind farm are screened out using the K-means spatial clustering algorithm. The historical power sequences determined to be similar to the target offshore wind farm and feature data of target offshore wind farms are used as inputs to the prediction model to improve the efficiency of the framework's power prediction. Secondly, the short-term power prediction framework of offshore wind power based on the 3DTCN-CBAM-LSTM model is constructed, using the 3DTCN model's ability to capture the spatio-temporal dynamic characteristics of offshore wind farm data to improve the accuracy of the prediction model. The temporal characteristics of the data are strengthened using the LSTM model to improve the stability of the prediction model. Finally, the CBAM mechanism is introduced to combine channel attention and spatial attention to eliminate irrelevant information and capture the spatio-temporal characteristics of the data in a more targeted way, which further improves the accuracy of OWPF. To verify the practicality and reliability of the wind power prediction framework described in this study, the differences between the prediction results of the framework and those of the benchmark model are compared using single-step prediction and multi-step prediction (4, 6, 8, and 12 steps). Compared with the benchmark model (BPNN), the single-step prediction results show that the MAE, MAPE, and MSE metrics of the 3DTCN-CBAM-LSTM model are reduced by 20.004 MW, 50.13%, 55.61%, and 80.29%, respectively, and the R2 is improved by 3.39%, which is a substantial improvement in prediction performance. The multi-step prediction results show that, with the progression of the prediction steps, the 3DTCN-CBAM-LSTM model has the highest prediction accuracy and model fit at each step. Therefore, the proposed 3DTCN-CBAM-LSTM model presents obvious advantages and reliability in the prediction of offshore wind power multi-step power.
Suggested Citation
Du, Ruoyun & Chen, Hongfei & Yu, Min & Li, Wanying & Niu, Dongxiao & Wang, Keke & Zhang, Zuozhong, 2024.
"3DTCN-CBAM-LSTM short-term power multi-step prediction model for offshore wind power based on data space and multi-field cluster spatio-temporal correlation,"
Applied Energy, Elsevier, vol. 376(PA).
Handle:
RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924015526
DOI: 10.1016/j.apenergy.2024.124169
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924015526. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.