IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v3y2018i9d10.1038_s41560-018-0198-9.html
   My bibliography  Save this article

An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage

Author

Listed:
  • Yang Jin

    (Tsinghua University
    Zhengzhou University)

  • Kai Liu

    (Tsinghua University)

  • Jialiang Lang

    (Tsinghua University)

  • Denys Zhuo

    (Stanford University)

  • Zeya Huang

    (Tsinghua University)

  • Chang-an Wang

    (Tsinghua University)

  • Hui Wu

    (Tsinghua University)

  • Yi Cui

    (Stanford University
    Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory)

Abstract

Batteries are an attractive grid energy storage technology, but a reliable battery system with the functionalities required for a grid such as high power capability, high safety and low cost remains elusive. Here, we report a solid electrolyte-based molten lithium battery constructed with a molten lithium anode, a molten Sn–Pb or Bi–Pb alloy cathode and a garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) solid electrolyte tube. We show that the assembled Li||LLZTO||Sn–Pb and Li||LLZTO||Bi–Pb cells can stably cycle at an intermediate temperature of 240 °C for about one month at current densities of 50 mA cm−2 and 100 mA cm−2 respectively, with almost no capacity decay and an average Coulombic efficiency of 99.98%. Furthermore, the cells demonstrate high power capability with current densities up to 300 mA cm−2 (90 mW cm−2) for Li||LLZTO||Sn–Pb and 500 mA cm−2 (175 mW cm−2) for Li||LLZTO||Bi–Pb. Our design offers prospects for grid energy storage with intermediate temperature operations, high safety margin and low capital and maintenance costs.

Suggested Citation

  • Yang Jin & Kai Liu & Jialiang Lang & Denys Zhuo & Zeya Huang & Chang-an Wang & Hui Wu & Yi Cui, 2018. "An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage," Nature Energy, Nature, vol. 3(9), pages 732-738, September.
  • Handle: RePEc:nat:natene:v:3:y:2018:i:9:d:10.1038_s41560-018-0198-9
    DOI: 10.1038/s41560-018-0198-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-018-0198-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-018-0198-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agarwal, Daksh & Potnuru, Rakesh & Kaushik, Chiranjeev & Darla, Vinay Rajesh & Kulkarni, Kaustubh & Garg, Ashish & Gupta, Raju Kumar & Tiwari, Naveen & Nalwa, Kanwar Singh, 2022. "Recent advances in the modeling of fundamental processes in liquid metal batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Rajamani, Arunkumar & Panneerselvam, Thamayanthi & Murugan, Ramaswamy & Ramaswamy, Arun Prasath, 2023. "Electrospun derived polymer-garnet composite quasi solid state electrolyte with low interface resistance for lithium metal batteries," Energy, Elsevier, vol. 263(PE).
    3. Xiangkun Kong & Run Gu & Zongzi Jin & Lei Zhang & Chi Zhang & Wenyi Xiang & Cui Li & Kang Zhu & Yifan Xu & Huang Huang & Xiaoye Liu & Ranran Peng & Chengwei Wang, 2024. "Maximizing interface stability in all-solid-state lithium batteries through entropy stabilization and fast kinetics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Karmakar, Srikanta & Pramanik, Ashim & Kumbhakar, Partha & Sarkar, Rajat & Kumbhakar, Pathik, 2021. "Development of environment friendly water-based self-rechargeable battery," Renewable Energy, Elsevier, vol. 172(C), pages 1184-1193.
    5. Yubin He & Chunyang Wang & Rui Zhang & Peichao Zou & Zhouyi Chen & Seong-Min Bak & Stephen E. Trask & Yonghua Du & Ruoqian Lin & Enyuan Hu & Huolin L. Xin, 2024. "A self-healing plastic ceramic electrolyte by an aprotic dynamic polymer network for lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:3:y:2018:i:9:d:10.1038_s41560-018-0198-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.