IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v156y2022ics1364032121012454.html
   My bibliography  Save this article

Statistical analysis of greenhouse gas emissions of South Korean residential buildings

Author

Listed:
  • Ji, Changyoon
  • Hong, Taehoon
  • Kim, Hakpyeong

Abstract

This study analyzed the status of greenhouse gas (GHG) emissions of residential buildings in South Korea from 2015 to 2019, based on energy consumption data for all residential buildings in the country from the Korea National Building Energy Database. The analysis revealed that new residential buildings had a lower GHG emission intensity than old residential buildings and that strengthening the Building Energy Conservation Code (BECC) contributes to the reduction of GHG emissions from heating energy use in residential buildings. The GHG emission intensity for heating energy use of apartments to which the latest standard (0.21 W/m2·K U-value of exterior walls) was applied was 35.8% lower than that of apartments to which the insulation standard was not applied. However, despite the strengthening of the BECC, the GHG emission intensity for baseload and cooling energy use of apartments increased. This means that the BECC does not contribute to reducing GHG emissions from baseload and cooling energy use. Moreover, as the number of residential buildings continues to increase, their consolidated GHG emissions also increase. Since heating energy consumption is significantly influenced by the weather, GHG emissions from heating energy use can vary depending on the weather. For instance, GHG emissions from heating energy use can increase in extremely cold winter despite the strengthening of the BECC. Therefore, a policy is needed for strengthening the BECC as well as for enhancing building occupants' understanding of GHG emissions reduction in buildings and for promoting the occupants’ behavior change.

Suggested Citation

  • Ji, Changyoon & Hong, Taehoon & Kim, Hakpyeong, 2022. "Statistical analysis of greenhouse gas emissions of South Korean residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:rensus:v:156:y:2022:i:c:s1364032121012454
    DOI: 10.1016/j.rser.2021.111981
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121012454
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ki Uhn Ahn & Han Sol Shin & Cheol Soo Park, 2019. "Energy Analysis of 4625 Office Buildings in South Korea," Energies, MDPI, vol. 12(6), pages 1-16, March.
    2. Lu, Mengxue & Lai, Joseph, 2020. "Review on carbon emissions of commercial buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok, 2016. "Development of an integrated energy benchmark for a multi-family housing complex using district heating," Applied Energy, Elsevier, vol. 179(C), pages 1048-1061.
    4. Menezes, Anna Carolina & Cripps, Andrew & Bouchlaghem, Dino & Buswell, Richard, 2012. "Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap," Applied Energy, Elsevier, vol. 97(C), pages 355-364.
    5. Yu, Sha & Eom, Jiyong & Evans, Meredydd & Clarke, Leon, 2014. "A long-term, integrated impact assessment of alternative building energy code scenarios in China," Energy Policy, Elsevier, vol. 67(C), pages 626-639.
    6. Tae-Hyoung Kim & Young-Sun Jeong, 2018. "Analysis of Energy-Related Greenhouse Gas Emission in the Korea’s Building Sector: Use National Energy Statistics," Energies, MDPI, vol. 11(4), pages 1-17, April.
    7. Wang, Tao & Seo, Seongwon & Liao, Pin-Chao & Fang, Dongping, 2016. "GHG emission reduction performance of state-of-the-art green buildings: Review of two case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 484-493.
    8. Younghoon Kwak & Jeong-A Kang & Jung-Ho Huh & Tae-Hyoung Kim & Young-Sun Jeong, 2019. "An Analysis of the Effectiveness of Greenhouse Gas Reduction Policy for Office Building Design in South Korea," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Junsoo & Kim, Tae Wan & Koo, Choongwan, 2022. "A novel process model for developing a scalable room-level energy benchmark using real-time bigdata: Focused on identifying representative energy usage patterns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Younghoon Kwak & Jeong-A Kang & Jung-Ho Huh & Tae-Hyoung Kim & Young-Sun Jeong, 2019. "An Analysis of the Effectiveness of Greenhouse Gas Reduction Policy for Office Building Design in South Korea," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    2. Liu, Jiangyan & Chen, Huanxin & Liu, Jiahui & Li, Zhengfei & Huang, Ronggeng & Xing, Lu & Wang, Jiangyu & Li, Guannan, 2017. "An energy performance evaluation methodology for individual office building with dynamic energy benchmarks using limited information," Applied Energy, Elsevier, vol. 206(C), pages 193-205.
    3. Wang, Xia & Feng, Wei & Cai, Weiguang & Ren, Hong & Ding, Chao & Zhou, Nan, 2019. "Do residential building energy efficiency standards reduce energy consumption in China? – A data-driven method to validate the actual performance of building energy efficiency standards," Energy Policy, Elsevier, vol. 131(C), pages 82-98.
    4. Liu, Jiangyan & Wang, Jiangyu & Li, Guannan & Chen, Huanxin & Shen, Limei & Xing, Lu, 2017. "Evaluation of the energy performance of variable refrigerant flow systems using dynamic energy benchmarks based on data mining techniques," Applied Energy, Elsevier, vol. 208(C), pages 522-539.
    5. Khozema Ahmed Ali & Mardiana Idayu Ahmad & Yusri Yusup, 2020. "Issues, Impacts, and Mitigations of Carbon Dioxide Emissions in the Building Sector," Sustainability, MDPI, vol. 12(18), pages 1-11, September.
    6. Habtamu Tkubet Ebuy & Hind Bril El Haouzi & Riad Benelmir & Remi Pannequin, 2023. "Occupant Behavior Impact on Building Sustainability Performance: A Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    7. Mingshun Zhang & Xuan Ge & Ya Zhao & Chun Xia-Bauer, 2019. "Creating Statistics for China’s Building Energy Consumption Using an Adapted Energy Balance Sheet," Energies, MDPI, vol. 12(22), pages 1-15, November.
    8. Hui Li & Yanan Zheng & Guan Gong & Hongtao Guo, 2023. "A Simulation Study on Peak Carbon Emission of Public Buildings—In the Case of Henan Province, China," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    9. Yu, Sha & Tan, Qing & Evans, Meredydd & Kyle, Page & Vu, Linh & Patel, Pralit L., 2017. "Improving building energy efficiency in India: State-level analysis of building energy efficiency policies," Energy Policy, Elsevier, vol. 110(C), pages 331-341.
    10. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Anti Hamburg & Targo Kalamees, 2018. "The Influence of Energy Renovation on the Change of Indoor Temperature and Energy Use," Energies, MDPI, vol. 11(11), pages 1-15, November.
    12. Jakob Carlander & Bahram Moshfegh & Jan Akander & Fredrik Karlsson, 2020. "Effects on Energy Demand in an Office Building Considering Location, Orientation, Façade Design and Internal Heat Gains—A Parametric Study," Energies, MDPI, vol. 13(23), pages 1-22, November.
    13. Alencastro, João & Fuertes, Alba & de Wilde, Pieter, 2018. "The relationship between quality defects and the thermal performance of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 883-894.
    14. Xuejing Zheng & Boxiao Xu & Shijun You & Huan Zhang & Yaran Wang & Leizhai Sun, 2020. "Energy Consumption and CO 2 Emissions of Coach Stations in China," Energies, MDPI, vol. 13(14), pages 1-22, July.
    15. Prasanna, Ashreeta & Dorer, Viktor & Vetterli, Nadège, 2017. "Optimisation of a district energy system with a low temperature network," Energy, Elsevier, vol. 137(C), pages 632-648.
    16. Nestor Shpak & Solomiya Ohinok & Ihor Kulyniak & W³odzimierz Sroka & Armenia Androniceanu, 2022. "Macroeconomic Indicators and CO2 Emissions in the EU Region," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 24(61), pages 817-817, August.
    17. Kong, Minjin & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon, 2021. "Development of a framework for evaluating the contents and usability of the building life cycle assessment tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Younghoon Kwak & Jeonga Kang & Sun-Hye Mun & Young-Sun Jeong & Jung-Ho Huh, 2020. "Development and Application of a Flexible Modeling Approach to Reference Buildings for Energy Analysis," Energies, MDPI, vol. 13(21), pages 1-22, November.
    19. Zhong, Shengyuan & Zhao, Jun & Li, Wenjia & Li, Hao & Deng, Shuai & Li, Yang & Hussain, Sajjad & Wang, Xiaoyuan & Zhu, Jiebei, 2021. "Quantitative analysis of information interaction in building energy systems based on mutual information," Energy, Elsevier, vol. 214(C).
    20. Eugene Mohareb & Arman Hashemi & Mehdi Shahrestani & Minna Sunikka-Blank, 2017. "Retrofit Planning for the Performance Gap: Results of a Workshop on Addressing Energy, Health and Comfort Needs in a Protected Building," Energies, MDPI, vol. 10(8), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:156:y:2022:i:c:s1364032121012454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.