IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v206y2017icp193-205.html
   My bibliography  Save this article

An energy performance evaluation methodology for individual office building with dynamic energy benchmarks using limited information

Author

Listed:
  • Liu, Jiangyan
  • Chen, Huanxin
  • Liu, Jiahui
  • Li, Zhengfei
  • Huang, Ronggeng
  • Xing, Lu
  • Wang, Jiangyu
  • Li, Guannan

Abstract

A rational and reliable energy benchmark is useful for understanding and enhancing building performance while most buildings cannot provide sufficient information for a detailed energy assessment. This work presents a systematic methodology of developing dynamic energy benchmarks for individual office building with very limited information. Simultaneously, an energy consumption rating (ECR) system is established to provide vertical energy assessment for individual office building in a short time span, i.e. hourly. Based on the data produced by DOE prototype large office building model performed in the EnergyPlus environment, this study is conducted in three steps: (1) Step 1: Data preparation; (2) Step 2: Development of the dynamic energy benchmarks; and (3) Step 3: Evaluation of the dynamic energy benchmarks and ECR system. Based on the decision tree analysis, the system energy consumption is classified into eight patterns by few commonly accessible weather and time variables, i.e. outdoor dry-bulb temperature, relative humidity, day type and time type. Then, four energy benchmarks are developed according to four energy consumption patterns on weekdays. To verify the effectiveness of the proposed dynamic energy benchmarks, it is used to evaluate the building energy performance on September, October and November, respectively. Besides, comparative analysis is conducted between the energy baseline (i.e. the same benchmark is used for all energy consumption patterns) and proposed dynamic energy benchmarks. Accordingly, the hourly ECRs were calculated using energy baseline and proposed dynamic energy benchmarks, respectively. Results showed that the energy baseline can be improved by using the proposed dynamic energy benchmarks. And the proposed method is capable of evaluating the energy performance of information poor office buildings.

Suggested Citation

  • Liu, Jiangyan & Chen, Huanxin & Liu, Jiahui & Li, Zhengfei & Huang, Ronggeng & Xing, Lu & Wang, Jiangyu & Li, Guannan, 2017. "An energy performance evaluation methodology for individual office building with dynamic energy benchmarks using limited information," Applied Energy, Elsevier, vol. 206(C), pages 193-205.
  • Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:193-205
    DOI: 10.1016/j.apenergy.2017.08.153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917311698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok, 2016. "Development of an integrated energy benchmark for a multi-family housing complex using district heating," Applied Energy, Elsevier, vol. 179(C), pages 1048-1061.
    2. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok & Koo, Choongwan, 2017. "Improvements of the operational rating system for existing residential buildings," Applied Energy, Elsevier, vol. 193(C), pages 112-124.
    3. Li, Guannan & Hu, Yunpeng & Chen, Huanxin & Li, Haorong & Hu, Min & Guo, Yabin & Liu, Jiangyan & Sun, Shaobo & Sun, Miao, 2017. "Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions," Applied Energy, Elsevier, vol. 185(P1), pages 846-861.
    4. Menezes, Anna Carolina & Cripps, Andrew & Bouchlaghem, Dino & Buswell, Richard, 2012. "Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap," Applied Energy, Elsevier, vol. 97(C), pages 355-364.
    5. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok & Koo, Choongwan, 2017. "Development of a prediction model for the cost saving potentials in implementing the building energy efficiency rating certification," Applied Energy, Elsevier, vol. 189(C), pages 257-270.
    6. Djuric, Natasa & Novakovic, Vojislav, 2009. "Review of possibilities and necessities for building lifetime commissioning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 486-492, February.
    7. Park, Hyo Seon & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon & Jeong, Jaewook, 2016. "Development of a new energy benchmark for improving the operational rating system of office buildings using various data-mining techniques," Applied Energy, Elsevier, vol. 173(C), pages 225-237.
    8. Li, Zhengwei & Han, Yanmin & Xu, Peng, 2014. "Methods for benchmarking building energy consumption against its past or intended performance: An overview," Applied Energy, Elsevier, vol. 124(C), pages 325-334.
    9. Yan, Chengchu & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2015. "A multi-level energy performance diagnosis method for energy information poor buildings," Energy, Elsevier, vol. 83(C), pages 189-203.
    10. Koo, Choongwan & Hong, Taehoon, 2015. "Development of a dynamic operational rating system in energy performance certificates for existing buildings: Geostatistical approach and data-mining technique," Applied Energy, Elsevier, vol. 154(C), pages 254-270.
    11. Omar Isaac Asensio & Magali A. Delmas, 2017. "The effectiveness of US energy efficiency building labels," Nature Energy, Nature, vol. 2(4), pages 1-9, April.
    12. Zhao, Deyin & Zhong, Ming & Zhang, Xu & Su, Xing, 2016. "Energy consumption predicting model of VRV (Variable refrigerant volume) system in office buildings based on data mining," Energy, Elsevier, vol. 102(C), pages 660-668.
    13. Wang, Huilong & Xu, Peng & Lu, Xing & Yuan, Dengkuo, 2016. "Methodology of comprehensive building energy performance diagnosis for large commercial buildings at multiple levels," Applied Energy, Elsevier, vol. 169(C), pages 14-27.
    14. Liang, Xin & Hong, Tianzhen & Shen, Geoffrey Qiping, 2016. "Improving the accuracy of energy baseline models for commercial buildings with occupancy data," Applied Energy, Elsevier, vol. 179(C), pages 247-260.
    15. Alan J. Klockars & Gregory R. Hancock, 2000. "Scheffé’s More Powerful F-Protected Post Hoc Procedure," Journal of Educational and Behavioral Statistics, , vol. 25(1), pages 13-19, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Lee, Jaewook, 2021. "A data-driven approach for establishing a CO2 emission benchmark for a multi-family housing complex using data mining techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Song, Kwonsik & Jang, Youjin & Park, Moonseo & Lee, Hyun-Soo & Ahn, Joseph, 2020. "Energy efficiency of end-user groups for personalized HVAC control in multi-zone buildings," Energy, Elsevier, vol. 206(C).
    3. Deb, C. & Schlueter, A., 2021. "Review of data-driven energy modelling techniques for building retrofit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Salah Vaisi & Saleh Mohammadi & Benedetto Nastasi & Kavan Javanroodi, 2020. "A New Generation of Thermal Energy Benchmarks for University Buildings," Energies, MDPI, vol. 13(24), pages 1-18, December.
    6. Vaisi, Salah & Varmazyari, Pouya & Esfandiari, Masoud & Sharbaf, Sara A., 2023. "Developing a multi-level energy benchmarking and certification system for office buildings in a cold climate region," Applied Energy, Elsevier, vol. 336(C).
    7. Liu, Jiangyan & Li, Guannan & Liu, Bin & Li, Kuining & Chen, Huanxin, 2019. "Knowledge discovery of data-driven-based fault diagnostics for building energy systems: A case study of the building variable refrigerant flow system," Energy, Elsevier, vol. 174(C), pages 873-885.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jiangyan & Wang, Jiangyu & Li, Guannan & Chen, Huanxin & Shen, Limei & Xing, Lu, 2017. "Evaluation of the energy performance of variable refrigerant flow systems using dynamic energy benchmarks based on data mining techniques," Applied Energy, Elsevier, vol. 208(C), pages 522-539.
    2. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.
    4. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok & Koo, Choongwan, 2017. "Improvements of the operational rating system for existing residential buildings," Applied Energy, Elsevier, vol. 193(C), pages 112-124.
    5. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Lee, Jaewook, 2021. "A data-driven approach for establishing a CO2 emission benchmark for a multi-family housing complex using data mining techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Geraldi, Matheus Soares & Ghisi, Enedir, 2022. "Data-driven framework towards realistic bottom-up energy benchmarking using an Artificial Neural Network," Applied Energy, Elsevier, vol. 306(PA).
    7. Liu, Jiangyan & Zhang, Qing & Dong, Zhenxiang & Li, Xin & Li, Guannan & Xie, Yi & Li, Kuining, 2021. "Quantitative evaluation of the building energy performance based on short-term energy predictions," Energy, Elsevier, vol. 223(C).
    8. Rongjiang Ma & Xianlin Wang & Ming Shan & Nanyang Yu & Shen Yang, 2020. "Recognition of Variable-Speed Equipment in an Air-Conditioning System Using Numerical Analysis of Energy-Consumption Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
    9. Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
    10. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    11. Ji, Changyoon & Hong, Taehoon & Kim, Hakpyeong, 2022. "Statistical analysis of greenhouse gas emissions of South Korean residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Juaidi, Adel & AlFaris, Fadi & Montoya, Francisco G. & Manzano-Agugliaro, Francisco, 2016. "Energy benchmarking for shopping centers in Gulf Coast region," Energy Policy, Elsevier, vol. 91(C), pages 247-255.
    13. Yu, Yanzhe & Cheng, Jie & You, Shijun & Ye, Tianzhen & Zhang, Huan & Fan, Man & Wei, Shen & Liu, Shan, 2019. "Effect of implementing building energy efficiency labeling in China: A case study in Shanghai," Energy Policy, Elsevier, vol. 133(C).
    14. Cai, Wei & Liu, Fei & Zhang, Hua & Liu, Peiji & Tuo, Junbo, 2017. "Development of dynamic energy benchmark for mass production in machining systems for energy management and energy-efficiency improvement," Applied Energy, Elsevier, vol. 202(C), pages 715-725.
    15. Rastogi, Ankush & Choi, Jun-Ki & Hong, Taehoon & Lee, Minhyun, 2017. "Impact of different LEED versions for green building certification and energy efficiency rating system: A Multifamily Midrise case study," Applied Energy, Elsevier, vol. 205(C), pages 732-740.
    16. Fan, Cheng & Xiao, Fu & Zhao, Yang & Wang, Jiayuan, 2018. "Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data," Applied Energy, Elsevier, vol. 211(C), pages 1123-1135.
    17. Attia, Shady & Shadmanfar, Niloufar & Ricci, Federico, 2020. "Developing two benchmark models for nearly zero energy schools," Applied Energy, Elsevier, vol. 263(C).
    18. Salah Vaisi & Saleh Mohammadi & Benedetto Nastasi & Kavan Javanroodi, 2020. "A New Generation of Thermal Energy Benchmarks for University Buildings," Energies, MDPI, vol. 13(24), pages 1-18, December.
    19. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    20. Wang, Xia & Feng, Wei & Cai, Weiguang & Ren, Hong & Ding, Chao & Zhou, Nan, 2019. "Do residential building energy efficiency standards reduce energy consumption in China? – A data-driven method to validate the actual performance of building energy efficiency standards," Energy Policy, Elsevier, vol. 131(C), pages 82-98.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:206:y:2017:i:c:p:193-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.