One-Step Synthesis of Highly Dispersed and Stable Ni Nanoparticles Confined by CeO 2 on SiO 2 for Dry Reforming of Methane
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Aramouni, Nicolas Abdel Karim & Touma, Jad G. & Tarboush, Belal Abu & Zeaiter, Joseph & Ahmad, Mohammad N., 2018. "Catalyst design for dry reforming of methane: Analysis review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2570-2585.
- Abdulrasheed, Abdulrahman & Jalil, Aishah Abdul & Gambo, Yahya & Ibrahim, Maryam & Hambali, Hambali Umar & Shahul Hamid, Muhamed Yusuf, 2019. "A review on catalyst development for dry reforming of methane to syngas: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 175-193.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wenjuan Yang & Mohamed Nawwar & Igor Zhitomirsky, 2022. "Facile Route for Fabrication of Ferrimagnetic Mn 3 O 4 Spinel Material for Supercapacitors with Enhanced Capacitance," Energies, MDPI, vol. 15(5), pages 1-12, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Baena-Moreno, Francisco M. & Sebastia-Saez, Daniel & Pastor-Pérez, Laura & Reina, Tomas Ramirez, 2021. "Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
- Arslan Mazhar & Asif Hussain Khoja & Abul Kalam Azad & Faisal Mushtaq & Salman Raza Naqvi & Sehar Shakir & Muhammad Hassan & Rabia Liaquat & Mustafa Anwar, 2021. "Performance Analysis of TiO 2 -Modified Co/MgAl 2 O 4 Catalyst for Dry Reforming of Methane in a Fixed Bed Reactor for Syngas (H 2 , CO) Production," Energies, MDPI, vol. 14(11), pages 1-20, June.
- Li, Ziwei & Lin, Qian & Li, Min & Cao, Jianxin & Liu, Fei & Pan, Hongyan & Wang, Zhigang & Kawi, Sibudjing, 2020. "Recent advances in process and catalyst for CO2 reforming of methane," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Taherian, Zahra & Khataee, Alireza & Orooji, Yasin, 2020. "Facile synthesis of yttria-promoted nickel catalysts supported on MgO-MCM-41 for syngas production from greenhouse gases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Gao, Yuchen & Jiang, Jianguo & Meng, Yuan & Aihemaiti, Aikelaimu & Ju, Tongyao & Chen, Xuejing & Yan, Feng, 2020. "A novel nickel catalyst supported on activated coal fly ash for syngas production via biogas dry reforming," Renewable Energy, Elsevier, vol. 149(C), pages 786-793.
- Freida Ozavize Ayodele & Siti Indati Mustapa & Bamidele Victor Ayodele & Norsyahida Mohammad, 2020. "An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
- Jung, Sungyup & Lee, Jechan & Moon, Deok Hyun & Kim, Ki-Hyun & Kwon, Eilhann E., 2021. "Upgrading biogas into syngas through dry reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
- Al-Fatesh, Ahmed Sadeq & Hanan atia, & Ibrahim, Ahmed Aidid & Fakeeha, Anis Hamza & Singh, Sunit Kumar & Labhsetwar, Nitin K. & Shaikh, Hamid & Qasim, Shamsudeen O., 2019. "CO2 reforming of CH4: Effect of Gd as promoter for Ni supported over MCM-41 as catalyst," Renewable Energy, Elsevier, vol. 140(C), pages 658-667.
- Moura, I.P. & Reis, A.C. & Bresciani, A.E. & Alves, R.M.B., 2021. "Carbon dioxide abatement by integration of methane bi-reforming process with ammonia and urea synthesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Carminati, Hudson Bolsoni & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F., 2021. "Sustainable Gas-to-Wire via dry reforming of carbonated natural gas: Ionic-liquid pre-combustion capture and thermodynamic efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Marina Arapova & Ekaterina Smal & Yuliya Bespalko & Konstantin Valeev & Valeria Fedorova & Amir Hassan & Olga Bulavchenko & Vladislav Sadykov & Mikhail Simonov, 2023. "Methane Dry Reforming Catalysts Based on Pr-Doped Ceria–Zirconia Synthesized in Supercritical Propanol," Energies, MDPI, vol. 16(12), pages 1-17, June.
- Toledo, Mario & Arriagada, Andrés & Ripoll, Nicolás & Salgansky, Eugene A. & Mujeebu, Muhammad Abdul, 2023. "Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
- Fan, Liyuan & Li, Chao'en & van Biert, Lindert & Zhou, Shou-Han & Tabish, Asif Nadeem & Mokhov, Anatoli & Aravind, Purushothaman Vellayani & Cai, Weiwei, 2022. "Advances on methane reforming in solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
- Guo, Yang & Li, Tengfei & Li, Dan & Cheng, Jiahui, 2024. "Efficient reduction of CO2 to high value-added compounds via photo-thermal catalysis: Mechanisms, catalysts and apparatuses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Guo, Qunwei & Geng, Jiaqi & Pan, Jiawen & Chi, Bo & Xiong, Chunyan & Pu, Jian, 2023. "A-site deficient La1-xCr0.95Ru0.05O3-δ perovskites for N-hexadecane steam reforming: Effect of steam activation and active oxygen," Renewable Energy, Elsevier, vol. 219(P2).
- Su, Bosheng & Han, Wei & He, Hongzhou & Jin, Hongguang & Chen, Zhijie & Zheng, Jieqing & Yang, Shaohui & Zhang, Xiaodong, 2020. "Using moderate carbon dioxide separation to improve the performance of solar-driven biogas reforming process," Applied Energy, Elsevier, vol. 279(C).
- Guohong Wang & Shunli Zhang & Zhuo Huang & Xin Cui & Zhengchang Song, 2023. "Study of the Structure and Catalytic Activity of B-Site Doping Perovskite for an Inferior Anthracite Coal Combustion," Energies, MDPI, vol. 16(14), pages 1-17, July.
More about this item
Keywords
dry reforming of methane; Ni; carbon deposition; colloidal solution combustion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5956-:d:445261. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.