IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v64y2014icp153-163.html
   My bibliography  Save this article

An inexact optimization model for energy-environment systems management in the mixed fuzzy, dual-interval and stochastic environment

Author

Listed:
  • Li, G.C.
  • Huang, G.H.
  • Sun, W.
  • Ding, X.W.

Abstract

Greenhouse gas (GHG)-emission mitigation has been a complex issue challenging decision makers in energy systems management. This study presents a fuzzy dual-interval multi-stage stochastic programming (FDMSP) approach for the planning of integrated energy-environment systems under multiple uncertainties. The approach is derived by incorporating the concepts of fuzzy programming, interval-parameter programming and dual-interval programming within a multi-stage stochastic optimization framework. With the FDMSP approach, issues of GHG-emission mitigation can be effectively reflected throughout the process of energy systems planning. The proposed method has advantages in integrating inherent system uncertainties, expressed not only as discrete intervals and dual intervals but also as possibility and probability distributions, into its solution procedure. Moreover, the method can also address the dynamics of system conditions within a multi-stage planning context. Through the application of the FDMSP to a hypothetical case of regional energy-environment system management, it indicated that reasonable solutions could be generated for both binary and continuous variables in deterministic, interval and dual-interval formats; and that interactions among multiple energy related activities could be effectively reflected. Generated decision alternatives from a FDMSP model could help decision makers identify desired strategies related to renewable/non-renewable energy production and allocation, GHG emission mitigation, as well as facility capacity expansion in a mixed multi-uncertain environment. Tradeoffs among system costs, energy utilizations and GHG emission control could be effectively addressed.

Suggested Citation

  • Li, G.C. & Huang, G.H. & Sun, W. & Ding, X.W., 2014. "An inexact optimization model for energy-environment systems management in the mixed fuzzy, dual-interval and stochastic environment," Renewable Energy, Elsevier, vol. 64(C), pages 153-163.
  • Handle: RePEc:eee:renene:v:64:y:2014:i:c:p:153-163
    DOI: 10.1016/j.renene.2013.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113005910
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kanudia, Amit & Shukla, PR, 1998. "Modelling of Uncertainties and Price Elastic Demands in Energy-environment Planning for India," Omega, Elsevier, vol. 26(3), pages 409-423, June.
    2. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.
    3. Li, G.C. & Huang, G.H. & Lin, Q.G. & Zhang, X.D. & Tan, Q. & Chen, Y.M., 2011. "Development of a GHG-mitigation oriented inexact dynamic model for regional energy system management," Energy, Elsevier, vol. 36(5), pages 3388-3398.
    4. Zhang, Y.M. & Huang, G.H. & Lin, Q.G. & Lu, H.W., 2012. "Integer fuzzy credibility constrained programming for power system management," Energy, Elsevier, vol. 38(1), pages 398-405.
    5. Lin, Q.G. & Huang, G.H., 2009. "A dynamic inexact energy systems planning model for supporting greenhouse-gas emission management and sustainable renewable energy development under uncertainty--A case study for the City of Waterloo,," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1836-1853, October.
    6. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    7. Lin, Q.G. & Huang, G.H., 2009. "Planning of energy system management and GHG-emission control in the Municipality of Beijing--An inexact-dynamic stochastic programming model," Energy Policy, Elsevier, vol. 37(11), pages 4463-4473, November.
    8. Q. Lin & G. Huang, 2011. "Interval-fuzzy stochastic optimization for regional energy systems planning and greenhouse-gas emission management under uncertainty—a case study for the Province of Ontario, Canada," Climatic Change, Springer, vol. 104(2), pages 353-378, January.
    9. Groscurth, H.-M. & Bruckner, Th. & Kümmel, R., 1993. "Energy, cost, and carbon dioxide optimization of disaggregated, regional energy-supply systems," Energy, Elsevier, vol. 18(12), pages 1187-1205.
    10. Iniyan, S & Suganthi, L & Jagadeesan, T.R & Samuel, Anand A, 2000. "Reliability based socio economic optimal renewable energy model for India," Renewable Energy, Elsevier, vol. 19(1), pages 291-297.
    11. Hu, Qing & Huang, Guohe & Cai, Yanpeng & Huang, Ying, 2011. "Feasibility-based inexact fuzzy programming for electric power generation systems planning under dual uncertainties," Applied Energy, Elsevier, vol. 88(12), pages 4642-4654.
    12. Messner, Sabine & Strubegger, Manfred, 1991. "Potential effects of emission taxes on CO2 emissions in the OECD and LDCs," Energy, Elsevier, vol. 16(11), pages 1379-1395.
    13. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, M.S. & Huang, G.H. & Chen, J.P. & Li, Y.P., 2022. "Energy-water-carbon nexus system planning: A case study of Yangtze River Delta urban agglomeration, China," Applied Energy, Elsevier, vol. 308(C).
    2. Irawan, Chandra Ade & Jones, Dylan & Hofman, Peter S. & Zhang, Lina, 2023. "Integrated strategic energy mix and energy generation planning with multiple sustainability criteria and hierarchical stakeholders," European Journal of Operational Research, Elsevier, vol. 308(2), pages 864-883.
    3. Chen, Shu & Shao, Dongguo & Tan, Xuezhi & Gu, Wenquan & Lei, Caixiu, 2017. "An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition," Agricultural Water Management, Elsevier, vol. 191(C), pages 98-112.
    4. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    5. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    6. Chandra Ade Irawan & Peter S. Hofman & Hing Kai Chan & Antony Paulraj, 2022. "A stochastic programming model for an energy planning problem: formulation, solution method and application," Annals of Operations Research, Springer, vol. 311(2), pages 695-730, April.
    7. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    8. Ioannou, Anastasia & Fuzuli, Gulistiani & Brennan, Feargal & Yudha, Satya Widya & Angus, Andrew, 2019. "Multi-stage stochastic optimization framework for power generation system planning integrating hybrid uncertainty modelling," Energy Economics, Elsevier, vol. 80(C), pages 760-776.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, G.C. & Huang, G.H. & Lin, Q.G. & Zhang, X.D. & Tan, Q. & Chen, Y.M., 2011. "Development of a GHG-mitigation oriented inexact dynamic model for regional energy system management," Energy, Elsevier, vol. 36(5), pages 3388-3398.
    2. Jin, L. & Huang, G.H. & Fan, Y.R. & Wang, L. & Wu, T., 2015. "A pseudo-optimal inexact stochastic interval T2 fuzzy sets approach for energy and environmental systems planning under uncertainty: A case study for Xiamen City of China," Applied Energy, Elsevier, vol. 138(C), pages 71-90.
    3. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    4. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    5. Zhou, Xiong & Huang, Guohe & Zhu, Hua & Chen, Jiapei & Xu, Jinliang, 2015. "Chance-constrained two-stage fractional optimization for planning regional energy systems in British Columbia, Canada," Applied Energy, Elsevier, vol. 154(C), pages 663-677.
    6. Dong, Cong & Huang, Guohe & Cai, Yanpeng & Li, Wei & Cheng, Guanhui, 2014. "Fuzzy interval programming for energy and environmental systems management under constraint-violation and energy-substitution effects: A case study for the City of Beijing," Energy Economics, Elsevier, vol. 46(C), pages 375-394.
    7. Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.
    8. Jin, S.W. & Li, Y.P. & Nie, S. & Sun, J., 2017. "The potential role of carbon capture and storage technology in sustainable electric-power systems under multiple uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 467-480.
    9. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    10. Yulei Xie & Linrui Wang & Guohe Huang & Dehong Xia & Ling Ji, 2018. "A Stochastic Inexact Robust Model for Regional Energy System Management and Emission Reduction Potential Analysis—A Case Study of Zibo City, China," Energies, MDPI, vol. 11(8), pages 1-24, August.
    11. Song, Tangnyu & Huang, Guohe & Zhou, Xiong & Wang, Xiuquan, 2018. "An inexact two-stage fractional energy systems planning model," Energy, Elsevier, vol. 160(C), pages 275-289.
    12. Zhu, Y. & Li, Y.P. & Huang, G.H. & Fu, D.Z., 2013. "Modeling for planning municipal electric power systems associated with air pollution control – A case study of Beijing," Energy, Elsevier, vol. 60(C), pages 168-186.
    13. Zhu, H. & Huang, W.W. & Huang, G.H., 2014. "Planning of regional energy systems: An inexact mixed-integer fractional programming model," Applied Energy, Elsevier, vol. 113(C), pages 500-514.
    14. Ye Liu & Guohe Huang & Yanpeng Cai & Cong Dong, 2011. "An Inexact Mix-Integer Two-Stage Linear Programming Model for Supporting the Management of a Low-Carbon Energy System in China," Energies, MDPI, vol. 4(10), pages 1-30, October.
    15. Huang, Runya & Huang, Guohe & Cheng, Guanhui & Dong, Cong, 2017. "Regional heuristic interval recourse power system analysis for electricity and environmental systems planning in Eastern China," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 185-201.
    16. Thangavelu, Sundar Raj & Khambadkone, Ashwin M. & Karimi, Iftekhar A., 2015. "Long-term optimal energy mix planning towards high energy security and low GHG emission," Applied Energy, Elsevier, vol. 154(C), pages 959-969.
    17. Zhang, Xiaodong & Vesselinov, Velimir V., 2016. "Energy-water nexus: Balancing the tradeoffs between two-level decision makers," Applied Energy, Elsevier, vol. 183(C), pages 77-87.
    18. Kostevšek, Anja & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Papa, Gregor & Petek, Janez, 2016. "The concept of an ecosystem model to support the transformation to sustainable energy systems," Applied Energy, Elsevier, vol. 184(C), pages 1460-1469.
    19. Niknam, Taher & Narimani, Mohammad rasoul & Jabbari, Masoud & Malekpour, Ahmad Reza, 2011. "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," Energy, Elsevier, vol. 36(11), pages 6420-6432.
    20. Cai, Y.P. & Huang, G.H. & Tan, Q. & Yang, Z.F., 2009. "Planning of community-scale renewable energy management systems in a mixed stochastic and fuzzy environment," Renewable Energy, Elsevier, vol. 34(7), pages 1833-1847.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:64:y:2014:i:c:p:153-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.