IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5772-d634640.html
   My bibliography  Save this article

A Novel Tripod Concept for Onshore Wind Turbine Towers

Author

Listed:
  • Charis J. Gantes

    (Institute of Steel Structures, National Technical University of Athens, GR-15780 Athens, Greece)

  • Maria Villi Billi

    (Ergon Analysis Consulting Engineers L.P., GR-15122 Marousi, Greece)

  • Mahmut Güldogan

    (Ateş Wind Power, TR-35720 İzmir, Turkey)

  • Semih Gül

    (Ateş Wind Power, TR-35720 İzmir, Turkey)

Abstract

A wind turbine tower assembly is presented, consisting of a lower “tripod section” and an upper tubular steel section, aiming at enabling very tall hub heights for optimum exploitation of the wind potential. The foundation consists of sets of piles connected at their top by a common pile cap below each tripod leg. The concept can be applied for the realization of new or the upgrade of existing wind turbine towers. It is adjustable to both onshore and offshore towers, but emphasis is directed towards overcoming the stricter onshore transportability constraints. For that purpose, pre-welded individual tripod parts are transported and are then bolted together during erection, contrary to fully pre-welded tripods that have been used in offshore towers. Alternative constructional details of the tripod joints are therefore proposed that address the fabrication, transportability, on-site erection and maintenance requirements and can meet structural performance criteria. The main structural features are demonstrated by means of a typical case study comprising a 180-m-tall tower, consisting of a 120-m-tall tubular superstructure on top of a 60-m-tall tripod substructure. Realistic cross-sections are calculated, leading to weight and cost estimations, thus demonstrating the feasibility and competitiveness of the concept.

Suggested Citation

  • Charis J. Gantes & Maria Villi Billi & Mahmut Güldogan & Semih Gül, 2021. "A Novel Tripod Concept for Onshore Wind Turbine Towers," Energies, MDPI, vol. 14(18), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5772-:d:634640
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5772/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5772/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang Ma & Pedro Martinez-Vazquez & Charalampos Baniotopoulos, 2020. "Buckling Analysis for Wind Turbine Tower Design: Thrust Load versus Compression Load Based on Energy Method," Energies, MDPI, vol. 13(20), pages 1-33, October.
    2. Hernandez-Estrada, Edwin & Lastres-Danguillecourt, Orlando & Robles-Ocampo, Jose B. & Lopez-Lopez, Andres & Sevilla-Camacho, Perla Y. & Perez-Sariñana, Bianca Y. & Dorrego-Portela, Jose R., 2021. "Considerations for the structural analysis and design of wind turbine towers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Michaela Gkantou & Carlos Rebelo & Charalampos Baniotopoulos, 2020. "Life Cycle Assessment of Tall Onshore Hybrid Steel Wind Turbine Towers," Energies, MDPI, vol. 13(15), pages 1-21, August.
    4. Jiang, Zhiyu, 2021. "Installation of offshore wind turbines: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Al-Sanad, Shaikha & Wang, Lin & Parol, Jafarali & Kolios, Athanasios, 2021. "Reliability-based design optimisation framework for wind turbine towers," Renewable Energy, Elsevier, vol. 167(C), pages 942-953.
    6. Yu Hu & Jian Yang & Charalampos Baniotopoulos, 2020. "Study of the Bearing Capacity of Stiffened Tall Offshore Wind Turbine Towers during the Erection Phase," Energies, MDPI, vol. 13(19), pages 1-19, October.
    7. Nafsika Stavridou & Efthymios Koltsakis & Charalampos C. Baniotopoulos, 2020. "Lattice and Tubular Steel Wind Turbine Towers. Comparative Structural Investigation," Energies, MDPI, vol. 13(23), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lenci, Stefano, 2023. "Along-wind and cross-wind coupled nonlinear oscillations of wind turbine towers close to 1:1 internal resonance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    2. Georgios Malliotakis & Panagiotis Alevras & Charalampos Baniotopoulos, 2021. "Recent Advances in Vibration Control Methods for Wind Turbine Towers," Energies, MDPI, vol. 14(22), pages 1-37, November.
    3. Shalini Verma & Akshoy Ranjan Paul & Nawshad Haque, 2022. "Selected Environmental Impact Indicators Assessment of Wind Energy in India Using a Life Cycle Assessment," Energies, MDPI, vol. 15(11), pages 1-16, May.
    4. Escalera Mendoza, Alejandra S. & Griffith, D. Todd & Jeong, Michael & Qin, Chris & Loth, Eric & Phadnis, Mandar & Pao, Lucy & Selig, Michael S., 2023. "Aero-structural rapid screening of new design concepts for offshore wind turbines," Renewable Energy, Elsevier, vol. 219(P2).
    5. Meng, Debiao & Yang, Shiyuan & Jesus, Abílio M.P. de & Zhu, Shun-Peng, 2023. "A novel Kriging-model-assisted reliability-based multidisciplinary design optimization strategy and its application in the offshore wind turbine tower," Renewable Energy, Elsevier, vol. 203(C), pages 407-420.
    6. Dan Li & Hongbing Bao & Ning Zhao, 2023. "Research of Turbine Tower Optimization Based on Criterion Method," Energies, MDPI, vol. 16(2), pages 1-17, January.
    7. Roman Gabl & Samuel Draycott & Ajit C. Pillai & Thomas Davey, 2021. "Experimental Data of Bottom Pressure and Free Surface Elevation including Wave and Current Interactions," Data, MDPI, vol. 6(10), pages 1-13, September.
    8. Lingqian Meng & Hongyan Ding, 2022. "Experimental Study on the Contact Force between the Vessel and CBF in the Integrated Floating Transportation Process of Offshore Wind Power," Energies, MDPI, vol. 15(21), pages 1-10, October.
    9. Giannini, Gianmaria & Rosa-Santos, Paulo & Ramos, Victor & Taveira-Pinto, Francisco, 2022. "Wave energy converters design combining hydrodynamic performance and structural assessment," Energy, Elsevier, vol. 249(C).
    10. Weigell, Jürgen & Jahn, Carlos, 2021. "Literature review of installation logistics for floating offshore wind turbines," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conf, volume 32, pages 599-622, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    11. Nurullah Yildiz & Hassan Hemida & Charalampos Baniotopoulos, 2021. "Life Cycle Assessment of a Barge-Type Floating Wind Turbine and Comparison with Other Types of Wind Turbines," Energies, MDPI, vol. 14(18), pages 1-19, September.
    12. Duong Minh Ngoc & Montri Luengchavanon & Pham Thi Anh & Kim Humphreys & Kuaanan Techato, 2022. "Shades of Green: Life Cycle Assessment of a Novel Small-Scale Vertical Axis Wind Turbine Tree," Energies, MDPI, vol. 15(20), pages 1-21, October.
    13. Papi, F. & Bianchini, A., 2022. "Technical challenges in floating offshore wind turbine upscaling: A critical analysis based on the NREL 5 MW and IEA 15 MW Reference Turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    14. Jan Michna & Krzysztof Rogowski & Galih Bangga & Martin O. L. Hansen, 2021. "Accuracy of the Gamma Re-Theta Transition Model for Simulating the DU-91-W2-250 Airfoil at High Reynolds Numbers," Energies, MDPI, vol. 14(24), pages 1-29, December.
    15. Ji Chen & Qi Xu & Xinyu Luo & Angran Tian & Sujing Xu & Qiang Tang, 2022. "Safety Evaluation and Energy Consumption Analysis of Deep Foundation Pit Excavation through Numerical Simulation and In-Site Monitoring," Energies, MDPI, vol. 15(19), pages 1-14, September.
    16. Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.
    17. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Thanh-Tuan Tran & Sangkyun Kang & Daeyong Lee, 2022. "Improving Structural Safety of L-Type Flange Joint for Wind Towers," Energies, MDPI, vol. 15(23), pages 1-14, November.
    19. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    20. Shan, Xiangying & Yu, Weichao & Hu, Bing & Wen, Kai & Ren, Shipeng & Men, Yang & Li, Mingrui & Gong, Jing & Zheng, Honglong & Hong, Bingyuan, 2024. "A methodology to determine target gas supply reliability of natural gas pipeline system based on cost-benefit analysis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5772-:d:634640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.