IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v134y2020ics1364032120306924.html
   My bibliography  Save this article

Recent advances in the roles of minerals for enhanced microbial extracellular electron transfer

Author

Listed:
  • Dong, Guowen
  • Chen, Yibin
  • Yan, Zhiying
  • Zhang, Jing
  • Ji, Xiaoliang
  • Wang, Honghui
  • Dahlgren, Randy A.
  • Chen, Fang
  • Shang, Xu
  • Chen, Zheng

Abstract

Minerals are ubiquitous in the natural environment and have close contact with microorganisms. In various scenarios, microorganisms that harbor extracellular electron transfer (EET) capabilities have evolved a series of beneficial strategies through the mutual exchange of electrons with extracellular minerals to enhance survival and metabolism. These electron exchange interactions are highly relevant to the cycling of elements in the epigeosphere and have a profound significance in bioelectrochemical engineering applications. In this review, we summarize recent advances related to the effects of different minerals that facilitate the EET process and discuss the underlying mechanisms and outlooks for future applications. The promotional effects of minerals arise from their redox-active ability, electrical conductivity and photocatalytic capability. In mineral-promoted EET processes, various responses have concurrently arisen in microorganisms, such as stretching of electrically conductive pili (e-pili), upregulated expression of outer-membrane cytochromes (Cyts) and production of specific enzymes, and secretion of extracellular polymeric substances (EPSs). This review synthesizes the understanding of electron exchange mechanisms between microorganisms and minerals and highlights potential applications in development of renewable energy production and pollutant remediation, which are topics of particular significance to future exploitation of biotechnology.

Suggested Citation

  • Dong, Guowen & Chen, Yibin & Yan, Zhiying & Zhang, Jing & Ji, Xiaoliang & Wang, Honghui & Dahlgren, Randy A. & Chen, Fang & Shang, Xu & Chen, Zheng, 2020. "Recent advances in the roles of minerals for enhanced microbial extracellular electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120306924
    DOI: 10.1016/j.rser.2020.110404
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120306924
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael W. I. Schmidt & Margaret S. Torn & Samuel Abiven & Thorsten Dittmar & Georg Guggenberger & Ivan A. Janssens & Markus Kleber & Ingrid Kögel-Knabner & Johannes Lehmann & David A. C. Manning & Pa, 2011. "Persistence of soil organic matter as an ecosystem property," Nature, Nature, vol. 478(7367), pages 49-56, October.
    2. Baek, Gahyun & Kim, Jinsu & Lee, Changsoo, 2019. "A review of the effects of iron compounds on methanogenesis in anaerobic environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Shen, Liang & Zhao, Qingchuan & Wu, Xuee & Li, Xiangzhen & Li, Qingbiao & Wang, Yuanpeng, 2016. "Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1358-1367.
    4. A. Bose & E.J. Gardel & C. Vidoudez & E.A. Parra & P.R. Girguis, 2014. "Electron uptake by iron-oxidizing phototrophic bacteria," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    5. Anhuai Lu & Yan Li & Song Jin & Xin Wang & Xiao-Lei Wu & Cuiping Zeng & Yan Li & Hongrui Ding & Ruixia Hao & Ming Lv & Changqiu Wang & Yueqin Tang & Hailiang Dong, 2012. "Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akinpelu, O.A. & Olaleye, O. & Fagbola, O., 2023. "The Soil Organic Matter Decomposers: A Bibliometric Analysis," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(4), August.
    2. Yapeng Song & Wei Qiao & Jiahao Zhang & Renjie Dong, 2023. "Process Performance and Functional Microbial Community in the Anaerobic Digestion of Chicken Manure: A Review," Energies, MDPI, vol. 16(12), pages 1-22, June.
    3. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    4. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    5. Keisy Torres & Francisco Javier Álvarez-Hornos & Carmen Gabaldón & Paula Marzal, 2021. "Start-Up of Chitosan-Assisted Anaerobic Sludge Bed Reactors Treating Light Oxygenated Solvents under Intermittent Operation," IJERPH, MDPI, vol. 18(9), pages 1-17, May.
    6. Miquelajauregui, Yosune & Cumming, Steven G. & Gauthier, Sylvie, 2019. "Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    7. Rafaella Campos & Gabrielle Ferreira Pires & Marcos Heil Costa, 2020. "Soil Carbon Sequestration in Rainfed and Irrigated Production Systems in a New Brazilian Agricultural Frontier," Agriculture, MDPI, vol. 10(5), pages 1-14, May.
    8. Yuxuan Li & Siyue Feng & Lin Wang & Chencen Lei & Hongbo Peng & Xinhua He & Dandan Zhou & Fangfang Li, 2024. "Improvement and Stability of Soil Organic Carbon: The Effect of Earthworm Mucus Organo-Mineral Associations with Montmorillonite and Hematite," Sustainability, MDPI, vol. 16(13), pages 1-13, June.
    9. Chaves, Gustavo T. & Teles, Felipe & Balbo, Antonio R. & dos Reis, Célia A. & Florentino, Helenice de Oliveira, 2024. "Mathematical modelling of biodigestion in an Indian biodigester and its stability analysis via Lyapunov technique," Renewable Energy, Elsevier, vol. 226(C).
    10. Jiuming Zhang & Jiahui Yuan & Yingxue Zhu & Enjun Kuang & Jiaye Han & Yanxiang Shi & Fengqin Chi & Dan Wei & Jie Liu, 2024. "Transformation and Sequestration of Total Organic Carbon in Black Soil under Different Fertilization Regimes with Straw Carbon Inputs," Agriculture, MDPI, vol. 14(6), pages 1-11, June.
    11. Goncharov, Anton A. & Gorbatova, Anna S. & Sidorova, Alena A. & Tiunov, Alexei V. & Bocharov, Gennady A., 2022. "Mathematical modelling of the interaction of winter wheat (Triticum aestivum) and Fusarium species (Fusarium spp.)," Ecological Modelling, Elsevier, vol. 465(C).
    12. Rizki Maftukhah & Katharina M. Keiblinger & Ngadisih Ngadisih & Murtiningrum Murtiningrum & Rosana M. Kral & Axel Mentler & Rebecca Hood-Nowotny, 2023. "Post-Tin-Mining Agricultural Soil Regeneration Using Local Organic Amendments Improve Nitrogen Fixation and Uptake in a Legume–Cassava Intercropping System," Land, MDPI, vol. 12(5), pages 1-17, May.
    13. Pan, Qin & Tian, Xiaochun & Li, Junpeng & Wu, Xuee & Zhao, Feng, 2021. "Interfacial electron transfer for carbon dioxide valorization in hybrid inorganic-microbial systems," Applied Energy, Elsevier, vol. 292(C).
    14. Shahmir Ali Kalhoro & Xuexuan Xu & Wenyuan Chen & Rui Hua & Sajjad Raza & Kang Ding, 2017. "Effects of Different Land-Use Systems on Soil Aggregates: A Case Study of the Loess Plateau (Northern China)," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    15. Chertov, Oleg & Shaw, Cindy & Shashkov, Maxim & Komarov, Alexander & Bykhovets, Sergey & Shanin, Vladimir & Grabarnik, Pavel & Frolov, Pavel & Kalinina, Olga & Priputina, Irina & Zubkova, Elena, 2017. "Romul_Hum model of soil organic matter formation coupled with soil biota activity. III. Parameterisation of earthworm activity," Ecological Modelling, Elsevier, vol. 345(C), pages 140-149.
    16. Baek, Gahyun & Kim, Jinsu & Lee, Changsoo, 2019. "A review of the effects of iron compounds on methanogenesis in anaerobic environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    17. Bingrui Liu & Jiacheng Qian & Ran Zhao & Qijun Yang & Kening Wu & Huafu Zhao & Zhe Feng & Jianhui Dong, 2022. "Spatio-Temporal Variation and Its Driving Forces of Soil Organic Carbon along an Urban–Rural Gradient: A Case Study of Beijing," IJERPH, MDPI, vol. 19(22), pages 1-22, November.
    18. Li, Lanyu & Yao, Zhiyi & You, Siming & Wang, Chi-Hwa & Chong, Clive & Wang, Xiaonan, 2019. "Optimal design of negative emission hybrid renewable energy systems with biochar production," Applied Energy, Elsevier, vol. 243(C), pages 233-249.
    19. Maggie R. Davis & Bruno J. R. Alves & Douglas L. Karlen & Keith L. Kline & Marcelo Galdos & Dana Abulebdeh, 2017. "Review of Soil Organic Carbon Measurement Protocols: A US and Brazil Comparison and Recommendation," Sustainability, MDPI, vol. 10(1), pages 1-20, December.
    20. Karolina Ryś & Damian Chmura & Dariusz Prostański & Gabriela Woźniak, 2023. "Biomass Amounts of Spontaneous Vegetation on Post-Coal Mine Novel Ecosystem in Relation to Biotic Parameters," Energies, MDPI, vol. 16(22), pages 1-30, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120306924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.