IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v113y2019ic42.html
   My bibliography  Save this article

A review of the effects of iron compounds on methanogenesis in anaerobic environments

Author

Listed:
  • Baek, Gahyun
  • Kim, Jinsu
  • Lee, Changsoo

Abstract

Iron compounds are abundantly present in both natural and engineered anaerobic environments where various biological processes including methanogenesis take place. Iron is an essential trace element for methanogens, and also other microorganisms involved in anaerobic digestion (AD). Dissolved iron can be readily taken up and used as a micronutrient by microorganisms; however, different iron species and compounds can influence methanogenesis in significantly different ways, both positive and negative, according to their physicochemical properties. This suggests that controlling methanogenic activity (i.e., stimulation or inhibition) in an AD system may be possible by adding a suitable type and amount of iron compound. The different effects of iron compounds on methanogenesis in anaerobic environments have not been systematically reviewed, and more comprehensive information is needed to look into the possible applications of iron compounds in biogas production. This review summarizes recent findings on the effects of different iron compounds on methanogenesis and discusses the underlying mechanisms and implications. Previous studies on the effects of iron addition on AD have reported contradictory observations for different iron sources, and the solubility, crystallinity, conductivity, and redox activity of iron compounds are the key factors that determine the direction and extent of effect on methanogenesis. These physicochemical properties are directly related to the bioavailability and/or electron-mediating capability of an iron compound, which affect the energy metabolism of methanogens and their syntrophic partners. This review will help deepen our understanding of the role and function of iron in AD and provide a reference for the control or promotion of methanogenesis, which is of particular interest from the perspective of energy production.

Suggested Citation

  • Baek, Gahyun & Kim, Jinsu & Lee, Changsoo, 2019. "A review of the effects of iron compounds on methanogenesis in anaerobic environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
  • Handle: RePEc:eee:rensus:v:113:y:2019:i:c:42
    DOI: 10.1016/j.rser.2019.109282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119304903
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Jing & Hao, Xiaodi & van Loosdrecht, Mark C.M. & Li, Ji, 2018. "Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 16-26.
    2. Shen, Liang & Zhao, Qingchuan & Wu, Xuee & Li, Xiangzhen & Li, Qingbiao & Wang, Yuanpeng, 2016. "Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1358-1367.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bardi, Mohammad Javad & Vinardell, Sergi & Astals, Sergi & Koch, Konrad, 2023. "Opportunities and challenges of micronutrients supplementation and its bioavailability in anaerobic digestion: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    2. Yapeng Song & Wei Qiao & Jiahao Zhang & Renjie Dong, 2023. "Process Performance and Functional Microbial Community in the Anaerobic Digestion of Chicken Manure: A Review," Energies, MDPI, vol. 16(12), pages 1-22, June.
    3. Dong, Guowen & Chen, Yibin & Yan, Zhiying & Zhang, Jing & Ji, Xiaoliang & Wang, Honghui & Dahlgren, Randy A. & Chen, Fang & Shang, Xu & Chen, Zheng, 2020. "Recent advances in the roles of minerals for enhanced microbial extracellular electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Huang, Bao-Cheng & Lu, Yan & Li, Wen-Wei, 2020. "Exploiting the energy potential of municipal wastewater in China by incorporating tailored anaerobic treatment processes," Renewable Energy, Elsevier, vol. 158(C), pages 534-540.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Bao-Cheng & He, Chuan-Shu & Fan, Nian-Si & Jin, Ren-Cun & Yu, Han-Qing, 2020. "Envisaging wastewater-to-energy practices for sustainable urban water pollution control: Current achievements and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Arora, Amarpreet Singh & Nawaz, Alam & Qyyum, Muhammad Abdul & Ismail, Sherif & Aslam, Muhammad & Tawfik, Ahmed & Yun, Choa Mun & Lee, Moonyong, 2021. "Energy saving anammox technology-based nitrogen removal and bioenergy recovery from wastewater: Inhibition mechanisms, state-of-the-art control strategies, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Nie, Erqi & He, Pinjing & Zhang, Hua & Hao, Liping & Shao, Liming & Lü, Fan, 2021. "How does temperature regulate anaerobic digestion?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Keisy Torres & Francisco Javier Álvarez-Hornos & Carmen Gabaldón & Paula Marzal, 2021. "Start-Up of Chitosan-Assisted Anaerobic Sludge Bed Reactors Treating Light Oxygenated Solvents under Intermittent Operation," IJERPH, MDPI, vol. 18(9), pages 1-17, May.
    5. Chaves, Gustavo T. & Teles, Felipe & Balbo, Antonio R. & dos Reis, Célia A. & Florentino, Helenice de Oliveira, 2024. "Mathematical modelling of biodigestion in an Indian biodigester and its stability analysis via Lyapunov technique," Renewable Energy, Elsevier, vol. 226(C).
    6. Baek, Gahyun & Kim, Jinsu & Lee, Changsoo, 2021. "Effectiveness of electromagnetic in situ magnetite capture in anaerobic sequencing batch treatment of dairy effluent under electro-syntrophic conditions," Renewable Energy, Elsevier, vol. 179(C), pages 105-115.
    7. Francesca Valenti & Attilio Toscano, 2021. "A GIS-Based Model to Assess the Potential of Wastewater Treatment Plants for Enhancing Bioenergy Production within the Context of the Water–Energy Nexus," Energies, MDPI, vol. 14(10), pages 1-15, May.
    8. Yin, Changkai & Shen, Yanwen & Dai, Xiaohu & Zhu, Nanwen & Yuan, Haiping & Lou, Ziyang & Yuan, Rongxue, 2020. "Integrated anaerobic digestion and CO2 sequestration for energy recovery from waste activated sludge by calcium addition: Timing matters," Energy, Elsevier, vol. 199(C).
    9. Sha, Hao & Zhao, Bo & Yang, Yuyi & Zhang, Yanhui & Zheng, Pengfei & Cao, Shengxian & Wang, Qing & Wang, Gong, 2023. "Enhanced anaerobic digestion of corn stover using magnetized cellulase combined with Ni-graphite coating," Energy, Elsevier, vol. 262(PB).
    10. Dong, Guowen & Chen, Yibin & Yan, Zhiying & Zhang, Jing & Ji, Xiaoliang & Wang, Honghui & Dahlgren, Randy A. & Chen, Fang & Shang, Xu & Chen, Zheng, 2020. "Recent advances in the roles of minerals for enhanced microbial extracellular electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Qiao Wang & Huan Li & Kai Feng & Jianguo Liu, 2020. "Oriented Fermentation of Food Waste towards High-Value Products: A Review," Energies, MDPI, vol. 13(21), pages 1-29, October.
    12. Hassan, Gamal K. & Abdel-Karim, Ahmed & Al-Shemy, Mona T. & Rojas, Patricia & Sanz, Jose L. & Ismail, Sameh H. & Mohamed, Gehad G. & El-gohary, Fatma A. & Al-sayed, Aly, 2022. "Harnessing Cu@Fe3O4 core shell nanostructure for biogas production from sewage sludge: Experimental study and microbial community shift," Renewable Energy, Elsevier, vol. 188(C), pages 1059-1071.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:113:y:2019:i:c:42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.