IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4675-d1169573.html
   My bibliography  Save this article

Process Performance and Functional Microbial Community in the Anaerobic Digestion of Chicken Manure: A Review

Author

Listed:
  • Yapeng Song

    (College of Engineering, Biomass Engineering Center, China Agricultural University, Beijing 100083, China
    Sanya Institute of China Agricultural University, Sanya 572025, China)

  • Wei Qiao

    (College of Engineering, Biomass Engineering Center, China Agricultural University, Beijing 100083, China
    Sanya Institute of China Agricultural University, Sanya 572025, China)

  • Jiahao Zhang

    (College of Engineering, Biomass Engineering Center, China Agricultural University, Beijing 100083, China
    Sanya Institute of China Agricultural University, Sanya 572025, China)

  • Renjie Dong

    (College of Engineering, Biomass Engineering Center, China Agricultural University, Beijing 100083, China)

Abstract

Anaerobic digestion is one of the most widely used treatment methods for animal manure. Chicken manure has high methane production potential and is thus a suitable substrate for biogas plants. However, high nitrogen content inhibits the metabolism of anaerobic microorganisms and thus hinders methane production from chicken manure. Enhancing the performance of anaerobic digestion for chicken manure is indeed a long-standing challenge. This review presents new insights into maintaining methanogens’ activities, the decomposition of acetate, and the dynamics of methanogenic pathways under high ammonia stress. This review also analyzed the possible strategies for alleviating ammonia inhibition effects, including supplementing trace elements, co-digestion with nitrogen-less materials, in-situ ammonia removal, and long adaptation of anaerobic consortia to ammonia stress. The insights obtained in this paper may provide helpful information for a better understanding of anaerobic digestion technology for chicken manure and other nitrogen-rich waste and wastewater.

Suggested Citation

  • Yapeng Song & Wei Qiao & Jiahao Zhang & Renjie Dong, 2023. "Process Performance and Functional Microbial Community in the Anaerobic Digestion of Chicken Manure: A Review," Energies, MDPI, vol. 16(12), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4675-:d:1169573
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4675/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4675/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Man & Li, Cheng & Ni, Fuquan & Chen, Anjun & Li, Meiliang & Shen, Guanghui & Deng, Yu & Deng, Liangwei, 2022. "Packed activated carbon particles triggered a more robust syntrophic pathway for acetate oxidation-hydrogenotrophic methanogenesis at extremely high ammonia concentrations," Renewable Energy, Elsevier, vol. 191(C), pages 305-317.
    2. Song, Yapeng & Hu, Wanrong & Qiao, Wei & Westerholm, Maria & Wandera, Simon M. & Dong, Renjie, 2022. "Upgrading the performance of high solids feeding anaerobic digestion of chicken manure under extremely high ammonia level," Renewable Energy, Elsevier, vol. 194(C), pages 13-20.
    3. Wandera, Simon M. & Qiao, Wei & Algapani, Dalal E. & Bi, Shaojie & Yin, Dongmin & Qi, Xiangyang & Liu, Yueling & Dach, Jacek & Dong, Renjie, 2018. "Searching for possibilities to improve the performance of full scale agricultural biogas plants," Renewable Energy, Elsevier, vol. 116(PA), pages 720-727.
    4. Baek, Gahyun & Kim, Jinsu & Lee, Changsoo, 2019. "A review of the effects of iron compounds on methanogenesis in anaerobic environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Bi, Shaojie & Westerholm, Maria & Hu, Wanrong & Mahdy, Ahmed & Dong, Taili & Sun, Yingcai & Qiao, Wei & Dong, Renjie, 2021. "The metabolic performance and microbial communities of anaerobic digestion of chicken manure under stressed ammonia condition: A case study of a 10-year successful biogas plant," Renewable Energy, Elsevier, vol. 167(C), pages 644-651.
    6. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    7. Bi, Shaojie & Qiao, Wei & Xiong, Linpeng & Ricci, Marina & Adani, Fabrizio & Dong, Renjie, 2019. "Effects of organic loading rate on anaerobic digestion of chicken manure under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 139(C), pages 242-250.
    8. Westerholm, Maria & Moestedt, Jan & Schnürer, Anna, 2016. "Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance," Applied Energy, Elsevier, vol. 179(C), pages 124-135.
    9. Bi, Shaojie & Qiao, Wei & Xiong, Linpeng & Mahdy, Ahmed & Wandera, Simon M. & Yin, Dongmin & Dong, Renjie, 2020. "Improved high solid anaerobic digestion of chicken manure by moderate in situ ammonia stripping and its relation to metabolic pathway," Renewable Energy, Elsevier, vol. 146(C), pages 2380-2389.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Yapeng & Hu, Wanrong & Qiao, Wei & Westerholm, Maria & Wandera, Simon M. & Dong, Renjie, 2022. "Upgrading the performance of high solids feeding anaerobic digestion of chicken manure under extremely high ammonia level," Renewable Energy, Elsevier, vol. 194(C), pages 13-20.
    2. Bi, Shaojie & Westerholm, Maria & Hu, Wanrong & Mahdy, Ahmed & Dong, Taili & Sun, Yingcai & Qiao, Wei & Dong, Renjie, 2021. "The metabolic performance and microbial communities of anaerobic digestion of chicken manure under stressed ammonia condition: A case study of a 10-year successful biogas plant," Renewable Energy, Elsevier, vol. 167(C), pages 644-651.
    3. Bi, Shaojie & Qiao, Wei & Xiong, Linpeng & Mahdy, Ahmed & Wandera, Simon M. & Yin, Dongmin & Dong, Renjie, 2020. "Improved high solid anaerobic digestion of chicken manure by moderate in situ ammonia stripping and its relation to metabolic pathway," Renewable Energy, Elsevier, vol. 146(C), pages 2380-2389.
    4. Palakodeti, Advait & Azman, Samet & Rossi, Barbara & Dewil, Raf & Appels, Lise, 2021. "A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Ao, Tianjie & Chen, Lin & Chen, Yichao & Liu, Xiaofeng & Wan, Liping & Li, Dong, 2021. "The screening of early warning indicators and microbial community of chicken manure thermophilic digestion at high organic loading rate," Energy, Elsevier, vol. 224(C).
    6. Anna Jasińska & Anna Grosser & Erik Meers, 2023. "Possibilities and Limitations of Anaerobic Co-Digestion of Animal Manure—A Critical Review," Energies, MDPI, vol. 16(9), pages 1-30, May.
    7. Zhou, Man & Li, Cheng & Ni, Fuquan & Chen, Anjun & Li, Meiliang & Shen, Guanghui & Deng, Yu & Deng, Liangwei, 2022. "Packed activated carbon particles triggered a more robust syntrophic pathway for acetate oxidation-hydrogenotrophic methanogenesis at extremely high ammonia concentrations," Renewable Energy, Elsevier, vol. 191(C), pages 305-317.
    8. Bi, Shaojie & Hong, Xiujie & Yang, Hongzhi & Yu, Xinhui & Fang, Shumei & Bai, Yan & Liu, Jinli & Gao, Yamei & Yan, Lei & Wang, Weidong & Wang, Yanjie, 2020. "Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste," Renewable Energy, Elsevier, vol. 150(C), pages 213-220.
    9. Yu, Xinhui & Yan, Lei & Wang, Haipeng & Bi, Shaojie & Zhang, Futao & Huang, Sisi & Wang, Yanhong & Wang, Yanjie, 2024. "Anaerobic co-digestion of cabbage waste and cattle manure: Effect of mixing ratio and hydraulic retention time," Renewable Energy, Elsevier, vol. 221(C).
    10. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    11. Qi, Chuanren & Cao, Dingge & Gao, Xingzu & Jia, Sumeng & Yin, Rongrong & Nghiem, Long D. & Li, Guoxue & Luo, Wenhai, 2023. "Optimising organic composition of feedstock to improve microbial dynamics and symbiosis to advance solid-state anaerobic co-digestion of sewage sludge and organic waste," Applied Energy, Elsevier, vol. 351(C).
    12. Justyna Górka & Małgorzata Cimochowicz-Rybicka & Dominika Poproch, 2022. "Sludge Management at the Kraków-Płaszów WWTP—Case Study," Sustainability, MDPI, vol. 14(13), pages 1-11, June.
    13. Guoliang Zhang & Suhua Lou & Yaowu Wu & Yang Wu & Xiangfeng Wen, 2020. "A New Commerce Operation Model for Integrated Energy System Containing the Utilization of Bio-Natural Gas," Energies, MDPI, vol. 13(24), pages 1-13, December.
    14. Elvira E. Ziganshina & Svetlana S. Bulynina & Ayrat M. Ziganshin, 2022. "Impact of Granular Activated Carbon on Anaerobic Process and Microbial Community Structure during Mesophilic and Thermophilic Anaerobic Digestion of Chicken Manure," Sustainability, MDPI, vol. 14(1), pages 1-20, January.
    15. Ma, Sining & Guo, Siyue & Zheng, Dingqian & Chang, Shiyan & Zhang, Xiliang, 2021. "Roadmap towards clean and low carbon heating to 2035: A provincial analysis in northern China," Energy, Elsevier, vol. 225(C).
    16. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    17. Niu, Miaomiao & Sun, Rongyue & Ding, Kuan & Gu, Haiming & Cui, Xiaobo & Wang, Liang & Hu, Jichu, 2022. "Synergistic effect on thermal behavior and product characteristics during co-pyrolysis of biomass and waste tire: Influence of biomass species and waste blending ratios," Energy, Elsevier, vol. 240(C).
    18. Huanhuan Xiong & Xuejing Wang & Xinrui Hu, 2023. "Research on the Duality of China’s Marine Fishery Carbon Emissions and Its Coordination with Economic Development," IJERPH, MDPI, vol. 20(2), pages 1-17, January.
    19. Wu, Le & Yang, Yong & Yan, Ting & Wang, Yuqi & Zheng, Lan & Qian, Kun & Hong, Furong, 2020. "Sustainable design and optimization of co-processing of bio-oil and vacuum gas oil in an existing refinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    20. Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4675-:d:1169573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.