IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4391.html
   My bibliography  Save this article

Electron uptake by iron-oxidizing phototrophic bacteria

Author

Listed:
  • A. Bose

    (Harvard University, 16 Divinity Avenue)

  • E.J. Gardel

    (Harvard University, 16 Divinity Avenue
    School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street)

  • C. Vidoudez

    (Harvard University, 16 Divinity Avenue)

  • E.A. Parra

    (Harvard University, 16 Divinity Avenue)

  • P.R. Girguis

    (Harvard University, 16 Divinity Avenue)

Abstract

Oxidation–reduction reactions underlie energy generation in nearly all life forms. Although most organisms use soluble oxidants and reductants, some microbes can access solid-phase materials as electron-acceptors or -donors via extracellular electron transfer. Many studies have focused on the reduction of solid-phase oxidants. Far less is known about electron uptake via microbial extracellular electron transfer, and almost nothing is known about the associated mechanisms. Here we show that the iron-oxidizing photoautotroph Rhodopseudomonas palustris TIE-1 accepts electrons from a poised electrode, with carbon dioxide as the sole carbon source/electron acceptor. Both electron uptake and ruBisCo form I expression are stimulated by light. Electron uptake also occurs in the dark, uncoupled from photosynthesis. Notably, the pioABC operon, which encodes a protein system essential for photoautotrophic growth by ferrous iron oxidation, influences electron uptake. These data reveal a previously unknown metabolic versatility of photoferrotrophs to use extracellular electron transfer for electron uptake.

Suggested Citation

  • A. Bose & E.J. Gardel & C. Vidoudez & E.A. Parra & P.R. Girguis, 2014. "Electron uptake by iron-oxidizing phototrophic bacteria," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4391
    DOI: 10.1038/ncomms4391
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4391
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4391?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Guowen & Chen, Yibin & Yan, Zhiying & Zhang, Jing & Ji, Xiaoliang & Wang, Honghui & Dahlgren, Randy A. & Chen, Fang & Shang, Xu & Chen, Zheng, 2020. "Recent advances in the roles of minerals for enhanced microbial extracellular electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Pan, Qin & Tian, Xiaochun & Li, Junpeng & Wu, Xuee & Zhao, Feng, 2021. "Interfacial electron transfer for carbon dioxide valorization in hybrid inorganic-microbial systems," Applied Energy, Elsevier, vol. 292(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.