Author
Listed:
- Liu, Jieyun
- Qiu, Husen
- He, Shuai
- Tian, Guangli
Abstract
Mulched drip irrigation (MDI) is generally accepted as a method to decrease soil salinization and improve crop yields in arid and semi-arid regions. However, there remain gaps in how MDI drives soil organic carbon (SOC) dynamic microbial assembly processes with time, and the mediating role of microorganisms remains unclear. In this study, we investigated the aforementioned issues across soil profiles in cotton fields with different years of MDI. The results showed that MDI did not cause the differences in SOC, particular organic carbon (POC), and mineral-associated organic carbon (MOC) in soil layers. The POC and MOC contents had a parabola relationship with time, and showed an opposite trend in soil. After 15 years of MDI, the ratio of MOC/SOC increased to a peak value of 50 % and 52 % in topsoil and subsoil, respectively; the ratio of POC/SOC decreased to valley values of 50 % and 48 %, respectively (P < 0.05). Long-term MDI reduced the differences in oxidase between soil layers but accelerated SOC loss by increasing polyphenol oxidase activity (P < 0.05). Compared with that of other years, with 10 years of MDI, bacterial Shannon diversity decreased to a valley value, and fungal Shannon diversity reached to a top value in subsoil (P < 0.05). In general, stochastic processes were mainly controlled by dispersal limitation, and undominated processes dominated microbial assembly; however, there was a close relationship between bacterial communities and organic carbon fractions. The high percentage of positive linkages among microorganisms indicated that long-term MDI was beneficial for carbon fixation. Additionally, a decrease of fungal oligotroph/copiotroph ratio, the relative abundance of Ascomycota and Basidiomycota was beneficial for the accumulation of SOC and POC in topsoil (P < 0.05). In conclusion, long-term MDI is useful for the fixation of organic carbon via improving soil POC content and strengthening linkages within community assemblies.
Suggested Citation
Liu, Jieyun & Qiu, Husen & He, Shuai & Tian, Guangli, 2024.
"Long-term mulched drip irrigation facilitates soil organic carbon stabilization and the dominance of microbial stochastic assembly processes,"
Agricultural Water Management, Elsevier, vol. 302(C).
Handle:
RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003433
DOI: 10.1016/j.agwat.2024.109008
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003433. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.