IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v154y2020icp569-580.html
   My bibliography  Save this article

Amine, thiol, and octyl functionalization of GO-Fe3O4 nanocomposites to enhance immobilization of lipase for transesterification

Author

Listed:
  • Mosayebi, Mehdi
  • Salehi, Zeinab
  • Doosthosseini, Hamid
  • Tishbi, Pedram
  • Kawase, Yoshinori

Abstract

A novel immobilization support for Candida rugosa lipase Type VII (CRL7) is presented in the form of an octyl-functionalized magnetic graphene oxide nanocomposite (GO-Fe3O4). Immobilized lipase on this support is demonstrated to have 94.7% activity relative to free enzyme (34.5 U/mg-lipase), a transesterification yield of 89%, and a retained activity of 63% after 10 cycles. The octyl-functionalized GO-Fe3O4 nanocomposite (GO-Fe3O4@OTMS) is shown to perform better than graphene oxide (GO) and functionalized nanocomposites with amine and thiol groups. X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller method, and vibrating sample magnetometry were used to characterize the functionalized nanocomposites, demonstrating that Fe3O4 nanoparticles with an average crystallite size of 13.9 nm were deposited on GO layers. The Bradford assays showed that the amount of immobilized CRL7 was significantly increased from 187.4 mg lipase/g-nanocomposite for unfunctionalized GO-Fe3O4 to 328.6, 265.3, and 413.2 mg lipase/g-nanocomposite after functionalization of the nanocomposites (GO-Fe3O4) using (3-aminopropyl)trimethoxysilane, (3-mercaptopropyl)trimethoxysilane, and (3-octyl)trimethoxysilane, respectively. The hydrolytic specific activity and transesterification of the immobilized lipase on GO-Fe3O4 were greatly enhanced by the functionalization of the nanocomposite. The optimal pH for the relative activity of CRL7 was shifted from 7 for free CRL7 and immobilized CRL7 on GO and GO-Fe3O4 to 8 for the functionalized nanocomposite. Furthermore, functionalization was also shown to maintain higher relative activity at non-optimal pH and to improve thermal stability.

Suggested Citation

  • Mosayebi, Mehdi & Salehi, Zeinab & Doosthosseini, Hamid & Tishbi, Pedram & Kawase, Yoshinori, 2020. "Amine, thiol, and octyl functionalization of GO-Fe3O4 nanocomposites to enhance immobilization of lipase for transesterification," Renewable Energy, Elsevier, vol. 154(C), pages 569-580.
  • Handle: RePEc:eee:renene:v:154:y:2020:i:c:p:569-580
    DOI: 10.1016/j.renene.2020.03.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120303621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guldhe, Abhishek & Singh, Bhaskar & Mutanda, Taurai & Permaul, Kugen & Bux, Faizal, 2015. "Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1447-1464.
    2. Kathryn M. Koeller & Chi-Huey Wong, 2001. "Enzymes for chemical synthesis," Nature, Nature, vol. 409(6817), pages 232-240, January.
    3. Adewale, Peter & Dumont, Marie-Josée & Ngadi, Michael, 2015. "Recent trends of biodiesel production from animal fat wastes and associated production techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 574-588.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Safaripour, Maryam & Saidi, Majid & Nodeh, Hamid Rashidi, 2023. "Synthesis and application of barium tin oxide-reduced graphene oxide nanocomposite as a highly stable heterogeneous catalyst for the biodiesel production," Renewable Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Ramos & Ana Paula Soares Dias & Jaime Filipe Puna & João Gomes & João Carlos Bordado, 2019. "Biodiesel Production Processes and Sustainable Raw Materials," Energies, MDPI, vol. 12(23), pages 1-30, November.
    2. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    3. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
    4. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    5. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
    6. Keon Hee Kim & Eun Yeol Lee, 2017. "Environmentally-Benign Dimethyl Carbonate-Mediated Production of Chemicals and Biofuels from Renewable Bio-Oil," Energies, MDPI, vol. 10(11), pages 1-15, November.
    7. Abomohra, Abd El-Fatah & Jin, Wenbiao & Tu, Renjie & Han, Song-Fang & Eid, Mohammed & Eladel, Hamed, 2016. "Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 596-606.
    8. Wang, Xiao-Man & Zeng, Ya-Nan & Wang, Yu-Ran & Wang, Fu-Ping & Wang, Yi-Tong & Li, Jun-Guo & Ji, Rui & Kang, Le-Le & Yu, Qing & Liu, Tian-Ji & Fang, Zhen, 2023. "A novel strategy for efficient biodiesel production: Optimization, prediction, and mechanism," Renewable Energy, Elsevier, vol. 207(C), pages 385-397.
    9. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    10. Ching-Velasquez, Jonny & Fernández-Lafuente, Roberto & Rodrigues, Rafael C. & Plata, Vladimir & Rosales-Quintero, Arnulfo & Torrestiana-Sánchez, Beatriz & Tacias-Pascacio, Veymar G., 2020. "Production and characterization of biodiesel from oil of fish waste by enzymatic catalysis," Renewable Energy, Elsevier, vol. 153(C), pages 1346-1354.
    11. Budžaki, Sandra & Miljić, Goran & Sundaram, Smitha & Tišma, Marina & Hessel, Volker, 2018. "Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors," Applied Energy, Elsevier, vol. 210(C), pages 268-278.
    12. Keskin, Ahmet, 2018. "Two-step methyl ester production and characterization from the broiler rendering fat: The optimization of the first step," Renewable Energy, Elsevier, vol. 122(C), pages 216-224.
    13. Foroutan, Rauf & Mohammadi, Reza & Razeghi, Jafar & Ramavandi, Bahman, 2021. "Biodiesel production from edible oils using algal biochar/CaO/K2CO3 as a heterogeneous and recyclable catalyst," Renewable Energy, Elsevier, vol. 168(C), pages 1207-1216.
    14. Jemima Romola, C.V. & Meganaharshini, M. & Rigby, S.P. & Ganesh Moorthy, I. & Shyam Kumar, R. & Karthikumar, Sankar, 2021. "A comprehensive review of the selection of natural and synthetic antioxidants to enhance the oxidative stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Cong, Wen-Jie & Wang, Yi-Tong & Li, Hu & Fang, Zhen & Sun, Jie & Liu, Hai-Tong & Liu, Jie-Teng & Tang, Song & Xu, Lujiang, 2020. "Direct production of biodiesel from waste oils with a strong solid base from alkalized industrial clay ash," Applied Energy, Elsevier, vol. 264(C).
    16. Ma, Yingqun & Wang, Qunhui & Zheng, Lu & Gao, Zhen & Wang, Qiang & Ma, Yuhui, 2016. "Mixed methanol/ethanol on transesterification of waste cooking oil using Mg/Al hydrotalcite catalyst," Energy, Elsevier, vol. 107(C), pages 523-531.
    17. Mehrasbi, Mohammad Reza & Mohammadi, Javad & Peyda, Mazyar & Mohammadi, Mehdi, 2017. "Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil," Renewable Energy, Elsevier, vol. 101(C), pages 593-602.
    18. Pires de Oliveira, Ivan & Caires, Anderson Rodrigues Lima, 2019. "Molecular arrangement in diesel/biodiesel blends: A Molecular Dynamics simulation analysis," Renewable Energy, Elsevier, vol. 140(C), pages 203-211.
    19. Gülüm, Mert & Bilgin, Atilla, 2018. "A comprehensive study on measurement and prediction of viscosity of biodiesel-diesel-alcohol ternary blends," Energy, Elsevier, vol. 148(C), pages 341-361.
    20. Gad, M.S. & Uysal, Cuneyt & El-Shafay, A.S. & Ağbulut, Ümit, 2024. "Exergetic and exergoeconomic assessments of a diesel engine fuelled with waste chicken fat biodiesel-diesel blends," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:154:y:2020:i:c:p:569-580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.