IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v120y2020ics1364032119308718.html
   My bibliography  Save this article

Effect of membrane properties on tilted panel performance of microalgae biomass filtration for biofuel feedstock

Author

Listed:
  • Lau, Allen K.S.
  • Bilad, M.R.
  • Nordin, N.A.H.M.
  • Faungnawakij, Kajornsak
  • Narkkun, Thanitporn
  • Wang, David K.
  • Mahlia, T.M.I.
  • Jaafar, Juhana

Abstract

Efficient membrane-based technology for microalgae harvesting can be achieved via application effective membrane fouling control coupled with appropriate membrane materials. This study explores the combined impact of membrane properties and the tilted panel system on filterability of Euglena sp broth, a potential source of biofuel feedstock. Four membranes from polyvinylidene difluoride (PVDF) and polysulfone (PSF) of PVDF-1, PVDF-3, PSF-1 and PSF-3 were evaluated. Generally, increasing aeration rate, tilting angle and lowering switching period enhance the system performance for all the tested membranes to give the highest permeances of 660, 724, 743 L/m2 h bar, respectively. Those values are among the highest reported in literature. The magnitude of the effect is affected by the membrane properties, mainly by pore size. Tilting without switching configuration is desirable for the membrane with a large pore size (PVDF-1, 0.42 μm) which produced the highest panel permeability of 724.3 (L/m2 h bar), which is >23% higher than the tilted with switching. For this membrane, intermittent aeration applied under switching mode worsened the pore blocking. Membranes with low pore sizes (0.11, 0.04 and 0.03 μm for PVDF-3, PSF-1 and PSF-3, respectively) excelled under switching mode since they are less prone to pore blocking due to smaller pore apertures. Overall results suggest that to gain the full benefit of the tilted panel, operational system of either one-sided without switching or two-sided involving switching must be tailored in conjunction with the desirable properties of the membranes. This finding can help to lower the energy input for microalgae-based biofuel production.

Suggested Citation

  • Lau, Allen K.S. & Bilad, M.R. & Nordin, N.A.H.M. & Faungnawakij, Kajornsak & Narkkun, Thanitporn & Wang, David K. & Mahlia, T.M.I. & Jaafar, Juhana, 2020. "Effect of membrane properties on tilted panel performance of microalgae biomass filtration for biofuel feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
  • Handle: RePEc:eee:rensus:v:120:y:2020:i:c:s1364032119308718
    DOI: 10.1016/j.rser.2019.109666
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119308718
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazemi Shariat Panahi, Hamed & Hosseinzadeh-Bandbafha, Homa & Dehhaghi, Mona & Orooji, Yasin & Mahian, Omid & Shahbeik, Hossein & Kiehbadroudinezhad, Mohammadali & Kalam, Md Abul & Karimi-Maleh, Hassa, 2024. "Nanotechnology applications in biodiesel processing and production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Zhao, Zhenyu & Muylaert, Koenraad & F.J. Vankelecom, Ivo, 2023. "Applying membrane technology in microalgae industry: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    3. Ennaceri, Houda & Fischer, Kristina & Schulze, Agnes & Moheimani, Navid Reza, 2022. "Membrane fouling control for sustainable microalgal biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    2. Arif, Muhammad & Li, Yuxi & El-Dalatony, Marwa M. & Zhang, Chunjiang & Li, Xiangkai & Salama, El-Sayed, 2021. "A complete characterization of microalgal biomass through FTIR/TGA/CHNS analysis: An approach for biofuel generation and nutrients removal," Renewable Energy, Elsevier, vol. 163(C), pages 1973-1982.
    3. Narayanan, Mathiyazhagan, 2024. "Promising biorefinery products from marine macro and microalgal biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    4. Koytsoumpa, E.I. & Magiri – Skouloudi, D. & Karellas, S. & Kakaras, E., 2021. "Bioenergy with carbon capture and utilization: A review on the potential deployment towards a European circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Arridina Susan Silitonga & Teuku Meurah Indra Mahlia & Abd Halim Shamsuddin & Hwai Chyuan Ong & Jassinnee Milano & Fitranto Kusumo & Abdi Hanra Sebayang & Surya Dharma & Husin Ibrahim & Hazlina Husin , 2019. "Optimization of Cerbera manghas Biodiesel Production Using Artificial Neural Networks Integrated with Ant Colony Optimization," Energies, MDPI, vol. 12(20), pages 1-21, October.
    6. Zhang, Yujiao & Niu, Shengli & Han, Kuihua & Li, Yingjie & Lu, Chunmei, 2021. "Synthesis of the SrO–CaO–Al2O3 trimetallic oxide catalyst for transesterification to produce biodiesel," Renewable Energy, Elsevier, vol. 168(C), pages 981-990.
    7. Teuku Meurah Indra Riayatsyah & Razali Thaib & Arridina Susan Silitonga & Jassinnee Milano & Abd. Halim Shamsuddin & Abdi Hanra Sebayang & Rahmawaty & Joko Sutrisno & Teuku Meurah Indra Mahlia, 2021. "Biodiesel Production from Reutealis trisperma Oil Using Conventional and Ultrasonication through Esterification and Transesterification," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    8. Fazril Ideris & Mohd Faiz Muaz Ahmad Zamri & Abd Halim Shamsuddin & Saifuddin Nomanbhay & Fitranto Kusumo & Islam Md Rizwanul Fattah & Teuku Meurah Indra Mahlia, 2022. "Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production," Energies, MDPI, vol. 15(19), pages 1-32, September.
    9. Vasistha, S. & Khanra, A. & Clifford, M. & Rai, M.P., 2021. "Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Hwai Chyuan Ong & M. Mofijur & A.S. Silitonga & D. Gumilang & Fitranto Kusumo & T.M.I. Mahlia, 2020. "Physicochemical Properties of Biodiesel Synthesised from Grape Seed, Philippine Tung, Kesambi, and Palm Oils," Energies, MDPI, vol. 13(6), pages 1-14, March.
    11. Suparmaniam, Uganeeswary & Lam, Man Kee & Uemura, Yoshimitsu & Lim, Jun Wei & Lee, Keat Teong & Shuit, Siew Hoong, 2019. "Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Li, Shuangxi & Hu, Tianyi & Xu, Yanzhe & Wang, Jingyi & Chu, Ruoyu & Yin, Zhihong & Mo, Fan & Zhu, Liandong, 2020. "A review on flocculation as an efficient method to harvest energy microalgae: Mechanisms, performances, influencing factors and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Cao, Xiyue & Xu, Hui & Li, Fosheng & Zou, Yijun & Ran, Yulu & Ma, Xiaorui & Cao, Yu & Xu, Qingrui & Qiao, Dairong & Cao, Yi, 2021. "One-step direct transesterification of wet yeast for biodiesel production catalyzed by magnetic nanoparticle-immobilized lipase," Renewable Energy, Elsevier, vol. 171(C), pages 11-21.
    14. Polat, Ece & Yüksel, Ebubekir & Altınbaş, Mahmut, 2020. "Effect of different iron sources on sustainable microalgae-based biodiesel production using Auxenochlorella protothecoides," Renewable Energy, Elsevier, vol. 162(C), pages 1970-1978.
    15. Rosli, Siti Suhailah & Amalina Kadir, Wan Nadiah & Wong, Chung Yiin & Han, Fon Yee & Lim, Jun Wei & Lam, Man Kee & Yusup, Suzana & Kiatkittipong, Worapon & Kiatkittipong, Kunlanan & Usman, Anwar, 2020. "Insight review of attached microalgae growth focusing on support material packed in photobioreactor for sustainable biodiesel production and wastewater bioremediation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Pang, Na & Gu, Xiangyu & Chen, Shulin & Kirchhoff, Helmut & Lei, Hanwu & Roje, Sanja, 2019. "Exploiting mixotrophy for improving productivities of biomass and co-products of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 450-460.
    17. Tanvir, Rahamat Ullah & Zhang, Jianying & Canter, Timothy & Chen, Dick & Lu, Jingrang & Hu, Zhiqiang, 2021. "Harnessing solar energy using phototrophic microorganisms: A sustainable pathway to bioenergy, biomaterials, and environmental solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    18. M. Mofijur & T.M.I. Mahlia & J. Logeswaran & M. Anwar & A.S. Silitonga & S.M. Ashrafur Rahman & A.H. Shamsuddin, 2019. "Potential of Rice Industry Biomass as a Renewable Energy Source," Energies, MDPI, vol. 12(21), pages 1-21, October.
    19. Aghilinategh, Maryam & Barati, Mohammad & Hamadanian, Masood, 2020. "The modified supercritical media for one-pot biodiesel production from Chlorella vulgaris using photochemically-synthetized SrTiO3 nanocatalyst," Renewable Energy, Elsevier, vol. 160(C), pages 176-184.
    20. Shokravi, Zahra & Shokravi, Hoofar & Atabani, A.E. & Lau, Woei Jye & Chyuan, Ong Hwai & Ismail, Ahmad Fauzi, 2022. "Impacts of the harvesting process on microalgae fatty acid profiles and lipid yields: Implications for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:120:y:2020:i:c:s1364032119308718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.