IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p494-d133526.html
   My bibliography  Save this article

Biological Pretreatment of Mexican Caribbean Macroalgae Consortiums Using Bm-2 Strain ( Trametes hirsuta ) and Its Enzymatic Broth to Improve Biomethane Potential

Author

Listed:
  • Raúl Tapia-Tussell

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán AC, Carretera Sierra Papacal-Chuburná Puerto, Km 5, Sierra Papacal, Mérida, Yucatán CP 97302, Mexico)

  • Julio Avila-Arias

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán AC, Carretera Sierra Papacal-Chuburná Puerto, Km 5, Sierra Papacal, Mérida, Yucatán CP 97302, Mexico)

  • Jorge Domínguez Maldonado

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán AC, Carretera Sierra Papacal-Chuburná Puerto, Km 5, Sierra Papacal, Mérida, Yucatán CP 97302, Mexico)

  • David Valero

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán AC, Carretera Sierra Papacal-Chuburná Puerto, Km 5, Sierra Papacal, Mérida, Yucatán CP 97302, Mexico)

  • Edgar Olguin-Maciel

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán AC, Carretera Sierra Papacal-Chuburná Puerto, Km 5, Sierra Papacal, Mérida, Yucatán CP 97302, Mexico)

  • Daisy Pérez-Brito

    (Laboratorio GeMBio, Centro de Investigación Científica de Yucatán AC, Calle No. 130 43 x 32 y 34 Col. Chuburná de Hidalgo, Mérida, Yucatán CP 97205, Mexico)

  • Liliana Alzate-Gaviria

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán AC, Carretera Sierra Papacal-Chuburná Puerto, Km 5, Sierra Papacal, Mérida, Yucatán CP 97302, Mexico)

Abstract

The macroalgae consortium biomass in the Mexican Caribbean represents an emerging and promising biofuel feedstock. Its biological pretreatment and potential for energetic conversion to biomethane were investigated, since some macroalgae have hard cell walls that present an obstacle to efficient methane production when those substrates are used. It has been revealed by anaerobic digestion assays that pretreatment with a Bm-2 strain ( Trametes hirsuta ) isolated from decaying wood in Yucatan, Mexico was 104 L CH 4 kg·VS −1 ; In fact, the fungal pretreatment produced a 20% increase in methane yield, with important amounts of alkali metals Ca, K, Mg, Na of 78 g/L, ash 35.5% and lignin 15.6%. It is unlikely that high concentrations of ash and alkali metals will produce an ideal feedstock for combustion or pyrolysis, but they can be recommended for a biological process.

Suggested Citation

  • Raúl Tapia-Tussell & Julio Avila-Arias & Jorge Domínguez Maldonado & David Valero & Edgar Olguin-Maciel & Daisy Pérez-Brito & Liliana Alzate-Gaviria, 2018. "Biological Pretreatment of Mexican Caribbean Macroalgae Consortiums Using Bm-2 Strain ( Trametes hirsuta ) and Its Enzymatic Broth to Improve Biomethane Potential," Energies, MDPI, vol. 11(3), pages 1-11, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:494-:d:133526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/494/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/494/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Smetacek & Adriana Zingone, 2013. "Green and golden seaweed tides on the rise," Nature, Nature, vol. 504(7478), pages 84-88, December.
    2. Tabassum, Muhammad Rizwan & Xia, Ao & Murphy, Jerry D., 2017. "Potential of seaweed as a feedstock for renewable gaseous fuel production in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 136-146.
    3. Montingelli, Maria E. & Benyounis, Khaled Y. & Quilty, Brid & Stokes, Joseph & Olabi, Abdul G., 2016. "Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland," Applied Energy, Elsevier, vol. 177(C), pages 671-682.
    4. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Xia, Ao & Murphy, Jerry D., 2015. "What is the gross energy yield of third generation gaseous biofuel sourced from seaweed?," Energy, Elsevier, vol. 81(C), pages 352-360.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    2. Weldemhret, Teklebrahan G. & Bañares, Angelo B. & Ramos, Kristine Rose M. & Lee, Won-Keun & Nisola, Grace M. & Valdehuesa, Kris Niño G. & Chung, Wook-Jin, 2020. "Current advances in ionic liquid-based pre-treatment and depolymerization of macroalgal biomass," Renewable Energy, Elsevier, vol. 152(C), pages 283-299.
    3. Rivera-Hernández, Yessica & Hernández-Eugenio, Guadalupe & Balagurusamy, Nagamani & Espinosa-Solares, Teodoro, 2022. "Sargassum-pig manure co-digestion: An alternative for bioenergy production and treating a polluting coastal waste," Renewable Energy, Elsevier, vol. 199(C), pages 1336-1344.
    4. Dimitar Karakashev & Yifeng Zhang, 2018. "BioEnergy and BioChemicals Production from Biomass and Residual Resources," Energies, MDPI, vol. 11(8), pages 1-6, August.
    5. Kouhgardi, Esmaeil & Zendehboudi, Sohrab & Mohammadzadeh, Omid & Lohi, Ali & Chatzis, Ioannis, 2023. "Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    6. Enrique Salgado-Hernández & Ángel Isauro Ortiz-Ceballos & Sergio Martínez-Hernández & Erik Samuel Rosas-Mendoza & Ana Elena Dorantes-Acosta & Andrea Alvarado-Vallejo & Alejandro Alvarado-Lassman, 2022. "Methane Production of Sargassum spp. Biomass from the Mexican Caribbean: Solid–Liquid Separation and Component Distribution," IJERPH, MDPI, vol. 20(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tabassum, Muhammad Rizwan & Xia, Ao & Murphy, Jerry D., 2017. "Comparison of pre-treatments to reduce salinity and enhance biomethane yields of Laminaria digitata harvested in different seasons," Energy, Elsevier, vol. 140(P1), pages 546-551.
    2. Tedesco, S. & Daniels, S., 2019. "Evaluation of inoculum acclimatation and biochemical seasonal variation for the production of renewable gaseous fuel from biorefined Laminaria sp. waste streams," Renewable Energy, Elsevier, vol. 139(C), pages 1-8.
    3. Ding, Lingkan & Chan Gutierrez, Enrique & Cheng, Jun & Xia, Ao & O'Shea, Richard & Guneratnam, Amita Jacob & Murphy, Jerry D., 2018. "Assessment of continuous fermentative hydrogen and methane co-production using macro- and micro-algae with increasing organic loading rate," Energy, Elsevier, vol. 151(C), pages 760-770.
    4. Czyrnek-Delêtre, Magdalena M. & Rocca, Stefania & Agostini, Alessandro & Giuntoli, Jacopo & Murphy, Jerry D., 2017. "Life cycle assessment of seaweed biomethane, generated from seaweed sourced from integrated multi-trophic aquaculture in temperate oceanic climates," Applied Energy, Elsevier, vol. 196(C), pages 34-50.
    5. Tedesco, S. & Daniels, S., 2018. "Optimisation of biogas generation from brown seaweed residues: Compositional and geographical parameters affecting the viability of a biorefinery concept," Applied Energy, Elsevier, vol. 228(C), pages 712-723.
    6. Wu, Benteng & Lin, Richen & O'Shea, Richard & Deng, Chen & Rajendran, Karthik & Murphy, Jerry D., 2021. "Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & O’Shea, Richard & Murphy, Jerry D., 2020. "Improving gaseous biofuel yield from seaweed through a cascading circular bioenergy system integrating anaerobic digestion and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    8. Rajendran, Karthik & Browne, James D. & Murphy, Jerry D., 2019. "What is the level of incentivisation required for biomethane upgrading technologies with carbon capture and reuse?," Renewable Energy, Elsevier, vol. 133(C), pages 951-963.
    9. John James Milledge & Supattra Maneein & Elena Arribas López & Debbie Bartlett, 2020. "Sargassum Inundations in Turks and Caicos: Methane Potential and Proximate, Ultimate, Lipid, Amino Acid, Metal and Metalloid Analyses," Energies, MDPI, vol. 13(6), pages 1-27, March.
    10. Kouhgardi, Esmaeil & Zendehboudi, Sohrab & Mohammadzadeh, Omid & Lohi, Ali & Chatzis, Ioannis, 2023. "Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    11. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    12. Zhang, Le & Loh, Kai-Chee & Lim, Jun Wei & Zhang, Jingxin, 2019. "Bioinformatics analysis of metagenomics data of biogas-producing microbial communities in anaerobic digesters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 110-126.
    13. Sun Kyeong Choi & Hyun-Ju Oh & Suk-Hyun Yun & Hyuk Je Lee & Kyounghoon Lee & Young Seok Han & Sangil Kim & Sang Rul Park, 2020. "Population Dynamics of the ‘Golden Tides’ Seaweed, Sargassum horneri , on the Southwestern Coast of Korea: The Extent and Formation of Golden Tides," Sustainability, MDPI, vol. 12(7), pages 1-15, April.
    14. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Murphy, Jerry D., 2016. "A detailed assessment of resource of biomethane from first, second and third generation substrates," Renewable Energy, Elsevier, vol. 87(P1), pages 656-665.
    15. Chung-Yiin Wong & Siti-Suhailah Rosli & Yoshimitsu Uemura & Yeek Chia Ho & Arunsri Leejeerajumnean & Worapon Kiatkittipong & Chin-Kui Cheng & Man-Kee Lam & Jun-Wei Lim, 2019. "Potential Protein and Biodiesel Sources from Black Soldier Fly Larvae: Insights of Larval Harvesting Instar and Fermented Feeding Medium," Energies, MDPI, vol. 12(8), pages 1-15, April.
    16. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & Wall, David & Murphy, Jerry D., 2022. "Improvement in biohydrogen and volatile fatty acid production from seaweed through addition of conductive carbon materials depends on the properties of the conductive materials," Energy, Elsevier, vol. 239(PC).
    17. Kehinde O. Olatunji & Daniel M. Madyira & Jacob O. Amos, 2024. "Sustainable enhancement of biogas and methane yield of macroalgae biomass using different pretreatment techniques: A mini-review," Energy & Environment, , vol. 35(2), pages 1050-1088, March.
    18. Enrique Salgado-Hernández & Ángel Isauro Ortiz-Ceballos & Sergio Martínez-Hernández & Erik Samuel Rosas-Mendoza & Ana Elena Dorantes-Acosta & Andrea Alvarado-Vallejo & Alejandro Alvarado-Lassman, 2022. "Methane Production of Sargassum spp. Biomass from the Mexican Caribbean: Solid–Liquid Separation and Component Distribution," IJERPH, MDPI, vol. 20(1), pages 1-13, December.
    19. John J. Milledge & Birthe V. Nielsen & Supattra Maneein & Patricia J. Harvey, 2019. "A Brief Review of Anaerobic Digestion of Algae for Bioenergy," Energies, MDPI, vol. 12(6), pages 1-22, March.
    20. Kumar, Kanhaiya & Ghosh, Supratim & Angelidaki, Irini & Holdt, Susan L. & Karakashev, Dimitar B. & Morales, Merlin Alvarado & Das, Debabrata, 2016. "Recent developments on biofuels production from microalgae and macroalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 235-249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:494-:d:133526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.