IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v76y2014icp857-862.html
   My bibliography  Save this article

Particle size reduction optimization of Laminaria spp. biomass for enhanced methane production

Author

Listed:
  • Tedesco, Silvia
  • Mac Lochlainn, Dubhaltach
  • Olabi, Abdul Ghani

Abstract

Recent studies have reported improved biogas and methane yield from marine biomass when the particle size is mechanically reduced and the specific surface area available to enzymes is increased prior to anaerobic incubation. Although the advantage of reducing the particle size has been identified, an ideal particle size that would offer greater yield with a positive energy balance has not been identified for such substrate to date. As particle size reduction by mechanical means is often highly demanding in energy, this paper attempts to fill this gap for macroalgal biomass by identifying the particle size distribution allowing the highest biogas and methane yields obtained in a previous work. The study estimated that when about 80% of the particles are sized below 1.6 mm2, a biogas and methane yield improvement of up to 52% and 53% respectively can be achieved. The results are discussed in relation to the biogas yield, related methane content and potential inhibitory phenomena occurred during the fermentation.

Suggested Citation

  • Tedesco, Silvia & Mac Lochlainn, Dubhaltach & Olabi, Abdul Ghani, 2014. "Particle size reduction optimization of Laminaria spp. biomass for enhanced methane production," Energy, Elsevier, vol. 76(C), pages 857-862.
  • Handle: RePEc:eee:energy:v:76:y:2014:i:c:p:857-862
    DOI: 10.1016/j.energy.2014.08.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214010512
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.08.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tarwadi, S.J. & Chauhan, V.D., 1987. "Seaweed biomass as a source of energy," Energy, Elsevier, vol. 12(5), pages 375-378.
    2. Clarke, A. & Prescott, T. & Khan, A. & Olabi, A.G., 2010. "Causes of breakage and disruption in a homogeniser," Applied Energy, Elsevier, vol. 87(12), pages 3680-3690, December.
    3. Mshandete, Anthony & Björnsson, Lovisa & Kivaisi, Amelia K. & Rubindamayugi, M.S.T. & Mattiasson, Bo, 2006. "Effect of particle size on biogas yield from sisal fibre waste," Renewable Energy, Elsevier, vol. 31(14), pages 2385-2392.
    4. Tedesco, S. & Marrero Barroso, T. & Olabi, A.G., 2014. "Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas," Renewable Energy, Elsevier, vol. 62(C), pages 527-534.
    5. Gurung, Anup & Van Ginkel, Steven W. & Kang, Woo-Chang & Qambrani, Naveed Ahmed & Oh, Sang-Eun, 2012. "Evaluation of marine biomass as a source of methane in batch tests: A lab-scale study," Energy, Elsevier, vol. 43(1), pages 396-401.
    6. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1462-1476.
    7. Tedesco, S. & Benyounis, K.Y. & Olabi, A.G., 2013. "Mechanical pretreatment effects on macroalgae-derived biogas production in co-digestion with sludge in Ireland," Energy, Elsevier, vol. 61(C), pages 27-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodriguez, C. & Alaswad, A. & El-Hassan, Z. & Olabi, A.G., 2018. "Improvement of methane production from P. canaliculata through mechanical pretreatment," Renewable Energy, Elsevier, vol. 119(C), pages 73-78.
    2. Kamil Witaszek & Krzysztof Pilarski & Gniewko Niedbała & Agnieszka Anna Pilarska & Marcin Herkowiak, 2020. "Energy Efficiency of Comminution and Extrusion of Maize Substrates Subjected to Methane Fermentation," Energies, MDPI, vol. 13(8), pages 1-18, April.
    3. Papurello, Davide & Lanzini, Andrea & Tognana, Lorenzo & Silvestri, Silvia & Santarelli, Massimo, 2015. "Waste to energy: Exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell (SOFC) stack," Energy, Elsevier, vol. 85(C), pages 145-158.
    4. Katherine G. Johnston & Abdelfatah Abomohra & Christopher E. French & Abdelrahman S. Zaky, 2023. "Recent Advances in Seaweed Biorefineries and Assessment of Their Potential for Carbon Capture and Storage," Sustainability, MDPI, vol. 15(17), pages 1-32, September.
    5. Tedesco, S. & Daniels, S., 2018. "Optimisation of biogas generation from brown seaweed residues: Compositional and geographical parameters affecting the viability of a biorefinery concept," Applied Energy, Elsevier, vol. 228(C), pages 712-723.
    6. Intaramas, Kanpichcha & Jonglertjunya, Woranart & Laosiripojana, Navadol & Sakdaronnarong, Chularat, 2018. "Selective conversion of cassava mash to glucose using solid acid catalysts by sequential solid state mixed-milling reaction and thermo-hydrolysis," Energy, Elsevier, vol. 149(C), pages 837-847.
    7. Zuo, Wei & E, Jiaqiang & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2017. "Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system," Energy, Elsevier, vol. 122(C), pages 408-419.
    8. Tamilarasan, K. & Kavitha, S. & Selvam, Ammaiyappan & Rajesh Banu, J. & Yeom, Ick Tae & Nguyen, Dinh Duc & Saratale, Ganesh Dattatraya, 2018. "Cost-effective, low thermo-chemo disperser pretreatment for biogas production potential of marine macroalgae Chaetomorpha antennina," Energy, Elsevier, vol. 163(C), pages 533-545.
    9. Amarnath Krishnamoorthy & Cristina Rodriguez & Andy Durrant, 2022. "Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    10. Nizami, A.S. & Ouda, O.K.M. & Rehan, M. & El-Maghraby, A.M.O. & Gardy, J. & Hassanpour, A. & Kumar, S. & Ismail, I.M.I., 2016. "The potential of Saudi Arabian natural zeolites in energy recovery technologies," Energy, Elsevier, vol. 108(C), pages 162-171.
    11. Kouhgardi, Esmaeil & Zendehboudi, Sohrab & Mohammadzadeh, Omid & Lohi, Ali & Chatzis, Ioannis, 2023. "Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    12. Alaswad, A. & Dassisti, M. & Prescott, T. & Olabi, A.G., 2015. "Technologies and developments of third generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1446-1460.
    13. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi & Liu, Xuejun, 2018. "Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production," Energy, Elsevier, vol. 165(PB), pages 411-418.
    14. Onumaegbu, C. & Mooney, J. & Alaswad, A. & Olabi, A.G., 2018. "Pre-treatment methods for production of biofuel from microalgae biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 16-26.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tedesco, S. & Daniels, S., 2018. "Optimisation of biogas generation from brown seaweed residues: Compositional and geographical parameters affecting the viability of a biorefinery concept," Applied Energy, Elsevier, vol. 228(C), pages 712-723.
    2. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Song, Minkyung & Duc Pham, Hong & Seon, Jiyun & Chul Woo, Hee, 2015. "Marine brown algae: A conundrum answer for sustainable biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 782-792.
    4. Tabassum, Muhammad Rizwan & Xia, Ao & Murphy, Jerry D., 2017. "Comparison of pre-treatments to reduce salinity and enhance biomethane yields of Laminaria digitata harvested in different seasons," Energy, Elsevier, vol. 140(P1), pages 546-551.
    5. Kouhgardi, Esmaeil & Zendehboudi, Sohrab & Mohammadzadeh, Omid & Lohi, Ali & Chatzis, Ioannis, 2023. "Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    6. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Xia, Ao & Murphy, Jerry D., 2015. "What is the gross energy yield of third generation gaseous biofuel sourced from seaweed?," Energy, Elsevier, vol. 81(C), pages 352-360.
    7. Ekpeni, Leonard E.N. & Benyounis, K.Y. & Nkem-Ekpeni, Fehintola F. & Stokes, J. & Olabi, A.G., 2015. "Underlying factors to consider in improving energy yield from biomass source through yeast use on high-pressure homogenizer (hph)," Energy, Elsevier, vol. 81(C), pages 74-83.
    8. Tedesco, S. & Marrero Barroso, T. & Olabi, A.G., 2014. "Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas," Renewable Energy, Elsevier, vol. 62(C), pages 527-534.
    9. Tedesco, S. & Daniels, S., 2019. "Evaluation of inoculum acclimatation and biochemical seasonal variation for the production of renewable gaseous fuel from biorefined Laminaria sp. waste streams," Renewable Energy, Elsevier, vol. 139(C), pages 1-8.
    10. Montingelli, Maria E. & Benyounis, Khaled Y. & Quilty, Brid & Stokes, Joseph & Olabi, Abdul G., 2016. "Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland," Applied Energy, Elsevier, vol. 177(C), pages 671-682.
    11. Intaramas, Kanpichcha & Jonglertjunya, Woranart & Laosiripojana, Navadol & Sakdaronnarong, Chularat, 2018. "Selective conversion of cassava mash to glucose using solid acid catalysts by sequential solid state mixed-milling reaction and thermo-hydrolysis," Energy, Elsevier, vol. 149(C), pages 837-847.
    12. Tamilarasan, K. & Kavitha, S. & Selvam, Ammaiyappan & Rajesh Banu, J. & Yeom, Ick Tae & Nguyen, Dinh Duc & Saratale, Ganesh Dattatraya, 2018. "Cost-effective, low thermo-chemo disperser pretreatment for biogas production potential of marine macroalgae Chaetomorpha antennina," Energy, Elsevier, vol. 163(C), pages 533-545.
    13. McKennedy, Janet & Sherlock, Orla, 2015. "Anaerobic digestion of marine macroalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1781-1790.
    14. Rodriguez, C. & Alaswad, A. & El-Hassan, Z. & Olabi, A.G., 2018. "Improvement of methane production from P. canaliculata through mechanical pretreatment," Renewable Energy, Elsevier, vol. 119(C), pages 73-78.
    15. Montingelli, M.E. & Tedesco, S. & Olabi, A.G., 2015. "Biogas production from algal biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 961-972.
    16. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    17. Zeng, Xianhai & Guo, Xiaoyi & Su, Gaomin & Danquah, Michael K. & Zhang, Shiduo & Lu, Yinghua & Sun, Yong & Lin, Lu, 2015. "Bioprocess considerations for microalgal-based wastewater treatment and biomass production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1385-1392.
    18. Papurello, Davide & Lanzini, Andrea & Tognana, Lorenzo & Silvestri, Silvia & Santarelli, Massimo, 2015. "Waste to energy: Exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell (SOFC) stack," Energy, Elsevier, vol. 85(C), pages 145-158.
    19. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    20. Montingelli, M.E. & Benyounis, K.Y. & Quilty, B. & Stokes, J. & Olabi, A.G., 2017. "Influence of mechanical pretreatment and organic concentration of Irish brown seaweed for methane production," Energy, Elsevier, vol. 118(C), pages 1079-1089.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:76:y:2014:i:c:p:857-862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.