IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v89y2018icp16-26.html
   My bibliography  Save this article

Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: A review

Author

Listed:
  • Wei, Jing
  • Hao, Xiaodi
  • van Loosdrecht, Mark C.M.
  • Li, Ji

Abstract

The Paris Climate Treaty implies the coming of a new era towards carbon-neutral operation in wastewater treatment plants (WWTPs), and thus energy self-sufficiency from biosolids and/or heat in the form of wastewater temperature has to be considered. In this regard, anaerobic digestion (AD) of sludge should be paid renewed attention to resolve a low conversion efficiency of biosolids. As a potential way to energy positive operation, exogenous iron has been proposed to enhance methane production in recent years. In this review, the authors provided a deep insight into the feasibility of iron-enhanced AD system. Hydrogen evolution from iron corrosion and its effects on CH4 production is firstly reviewed; then the roles of iron in reducing ORP was illustrated with regard to its impact on fermentation type; serving as an essential element and potential electron donor, the stimulating effects of iron on microorganisms and enzyme activities were also elaborated, and thus the technical feasibility of iron-based AD could be evaluated. In regards of the environmental and economic impacts of iron-based AD, life cycle assessment (LCA) was employed to calculate its economic feasibility, and the results revealed that iron-based AD system could reduce both operational costs and carbon emissions. Conclusion was drawn that iron-based anaerobic digestion is promising on technical level as well as economic perspective, and is expected to contribute to carbon-neutral operation of WWTPs. Iron-based anaerobic digestion is such a promising and sustainable strategy towards circular economy that it could be applied to many cross-disciplinary fields.

Suggested Citation

  • Wei, Jing & Hao, Xiaodi & van Loosdrecht, Mark C.M. & Li, Ji, 2018. "Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 16-26.
  • Handle: RePEc:eee:rensus:v:89:y:2018:i:c:p:16-26
    DOI: 10.1016/j.rser.2018.02.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118300698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.02.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dianne K. Newman & Roberto Kolter, 2000. "A role for excreted quinones in extracellular electron transfer," Nature, Nature, vol. 405(6782), pages 94-97, May.
    2. Hang T. Dinh & Jan Kuever & Marc Mußmann & Achim W. Hassel & Martin Stratmann & Friedrich Widdel, 2004. "Iron corrosion by novel anaerobic microorganisms," Nature, Nature, vol. 427(6977), pages 829-832, February.
    3. Chen, Wei-Ming & Kim, Hana & Yamaguchi, Hideka, 2014. "Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan," Energy Policy, Elsevier, vol. 74(C), pages 319-329.
    4. Renjun Ruan & Jiashun Cao & Chao Li & Di Zheng & Jingyang Luo, 2017. "The Influence of Micro-Oxygen Addition on Desulfurization Performance and Microbial Communities during Waste-Activated Sludge Digestion in a Rusty Scrap Iron-Loaded Anaerobic Digester," Energies, MDPI, vol. 10(2), pages 1-19, February.
    5. Abdelsalam, E. & Samer, M. & Attia, Y.A. & Abdel-Hadi, M.A. & Hassan, H.E. & Badr, Y., 2017. "Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure," Energy, Elsevier, vol. 120(C), pages 842-853.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arora, Amarpreet Singh & Nawaz, Alam & Qyyum, Muhammad Abdul & Ismail, Sherif & Aslam, Muhammad & Tawfik, Ahmed & Yun, Choa Mun & Lee, Moonyong, 2021. "Energy saving anammox technology-based nitrogen removal and bioenergy recovery from wastewater: Inhibition mechanisms, state-of-the-art control strategies, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Francesca Valenti & Attilio Toscano, 2021. "A GIS-Based Model to Assess the Potential of Wastewater Treatment Plants for Enhancing Bioenergy Production within the Context of the Water–Energy Nexus," Energies, MDPI, vol. 14(10), pages 1-15, May.
    3. Nie, Erqi & He, Pinjing & Zhang, Hua & Hao, Liping & Shao, Liming & Lü, Fan, 2021. "How does temperature regulate anaerobic digestion?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Huang, Bao-Cheng & He, Chuan-Shu & Fan, Nian-Si & Jin, Ren-Cun & Yu, Han-Qing, 2020. "Envisaging wastewater-to-energy practices for sustainable urban water pollution control: Current achievements and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Hassan, Gamal K. & Abdel-Karim, Ahmed & Al-Shemy, Mona T. & Rojas, Patricia & Sanz, Jose L. & Ismail, Sameh H. & Mohamed, Gehad G. & El-gohary, Fatma A. & Al-sayed, Aly, 2022. "Harnessing Cu@Fe3O4 core shell nanostructure for biogas production from sewage sludge: Experimental study and microbial community shift," Renewable Energy, Elsevier, vol. 188(C), pages 1059-1071.
    6. Yin, Changkai & Shen, Yanwen & Dai, Xiaohu & Zhu, Nanwen & Yuan, Haiping & Lou, Ziyang & Yuan, Rongxue, 2020. "Integrated anaerobic digestion and CO2 sequestration for energy recovery from waste activated sludge by calcium addition: Timing matters," Energy, Elsevier, vol. 199(C).
    7. Sha, Hao & Zhao, Bo & Yang, Yuyi & Zhang, Yanhui & Zheng, Pengfei & Cao, Shengxian & Wang, Qing & Wang, Gong, 2023. "Enhanced anaerobic digestion of corn stover using magnetized cellulase combined with Ni-graphite coating," Energy, Elsevier, vol. 262(PB).
    8. Qiao Wang & Huan Li & Kai Feng & Jianguo Liu, 2020. "Oriented Fermentation of Food Waste towards High-Value Products: A Review," Energies, MDPI, vol. 13(21), pages 1-29, October.
    9. Baek, Gahyun & Kim, Jinsu & Lee, Changsoo, 2019. "A review of the effects of iron compounds on methanogenesis in anaerobic environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    3. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    4. Ge, Zewen & Geng, Yong & Wei, Wendong & Jiang, Mingkun & Chen, Bin & Li, Jiashuo, 2023. "Embodied carbon emissions induced by the construction of hydropower infrastructure in China," Energy Policy, Elsevier, vol. 173(C).
    5. Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
    6. Aleksandra Badora & Krzysztof Kud & Marian Woźniak, 2021. "Nuclear Energy Perception and Ecological Attitudes," Energies, MDPI, vol. 14(14), pages 1-18, July.
    7. Shahriyar Nasirov & Carlos Silva & Claudio A. Agostini, 2015. "Investors’ Perspectives on Barriers to the Deployment of Renewable Energy Sources in Chile," Energies, MDPI, vol. 8(5), pages 1-21, April.
    8. Zheng, Shuhong & Yang, Juan & Yu, Shiwei, 2021. "How renewable energy technological innovation promotes renewable power generation: Evidence from China's provincial panel data," Renewable Energy, Elsevier, vol. 177(C), pages 1394-1407.
    9. Albiona Pestisha & Zoltán Gabnai & Aidana Chalgynbayeva & Péter Lengyel & Attila Bai, 2023. "On-Farm Renewable Energy Systems: A Systematic Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    10. Okubo, Toshihiro & Narita, Daiju & Rehdanz, Katrin & Schröder, Carsten, 2020. "Preferences for Nuclear Power in Post-Fukushima Japan: Evidence from a Large Nationwide Household Survey," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 13(11).
    11. Chun Chih Chen, 2021. "The path to a 2025 nuclear-free Taiwan: An analysis of dynamic competition among emissions, energy, and economy," Energy & Environment, , vol. 32(4), pages 668-689, June.
    12. Chien-Chi Lin & Chih-Ming Dong, 2023. "Exploring Consumers’ Purchase Intention on Energy-Efficient Home Appliances: Integrating the Theory of Planned Behavior, Perceived Value Theory, and Environmental Awareness," Energies, MDPI, vol. 16(6), pages 1-16, March.
    13. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    14. Grosser, Anna & Grobelak, Anna & Rorat, Agnieszka & Courtois, Pauline & Vandenbulcke, Franck & Lemière, Sébastien & Guyoneaud, Remy & Attard, Eleonore & Celary, Piotr, 2021. "Effects of silver nanoparticles on performance of anaerobic digestion of sewage sludge and associated microbial communities," Renewable Energy, Elsevier, vol. 171(C), pages 1014-1025.
    15. Yun-Hsun Huang & Jung-Hua Wu & Hao-Syuan Huang, 2021. "Analyzing the Driving Forces behind CO 2 Emissions in Energy-Resource-Poor and Fossil-Fuel-Centered Economies: Case Studies from Taiwan, Japan, and South Korea," Energies, MDPI, vol. 14(17), pages 1-14, August.
    16. Kowalska-Pyzalska, Anna & Kott, Joanna & Kott, Marek, 2020. "Why Polish market of alternative fuel vehicles (AFVs) is the smallest in Europe? SWOT analysis of opportunities and threats," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    17. Chang-Gi Min & Jong Keun Park & Don Hur & Mun-Kyeom Kim, 2015. "The Economic Viability of Renewable Portfolio Standard Support for Offshore Wind Farm Projects in Korea," Energies, MDPI, vol. 8(9), pages 1-20, September.
    18. Tahseen, Samiha & Karney, Bryan, 2017. "Opportunities for increased hydropower diversion at Niagara: An sSWOT analysis," Renewable Energy, Elsevier, vol. 101(C), pages 757-770.
    19. kos Hamburger & G bor Harangoz, 2018. "Factors Affecting the Evolution of Renewable Electricity Generating Capacities: A Panel Data Analysis of European Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 161-172.
    20. Wang Lai Wang & Marek Kryszak, 2020. "Technological Progress and Supply Base under Uncertain Market Conditions: The Case Study of the Taiwanese c-Si Solar Industry 2016–2019," Energies, MDPI, vol. 13(21), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:89:y:2018:i:c:p:16-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.