Exploiting the energy potential of municipal wastewater in China by incorporating tailored anaerobic treatment processes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.05.157
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Luo, Gang & Wang, Wen & Angelidaki, Irini, 2014. "A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent," Applied Energy, Elsevier, vol. 132(C), pages 536-542.
- Elalami, D. & Carrere, H. & Monlau, F. & Abdelouahdi, K. & Oukarroum, A. & Barakat, A., 2019. "Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Zhen, Guangyin & Pan, Yang & Lu, Xueqin & Li, Yu-You & Zhang, Zhongyi & Niu, Chengxin & Kumar, Gopalakrishnan & Kobayashi, Takuro & Zhao, Youcai & Xu, Kaiqin, 2019. "Anaerobic membrane bioreactor towards biowaste biorefinery and chemical energy harvest: Recent progress, membrane fouling and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- Baek, Gahyun & Kim, Jinsu & Lee, Changsoo, 2019. "A review of the effects of iron compounds on methanogenesis in anaerobic environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Di Maria, Francesco & Micale, Caterina & Contini, Stefano, 2016. "Energetic and environmental sustainability of the co-digestion of sludge with bio-waste in a life cycle perspective," Applied Energy, Elsevier, vol. 171(C), pages 67-76.
- Moreno, R. & San-Martín, M.I. & Escapa, A. & Morán, A., 2016. "Domestic wastewater treatment in parallel with methane production in a microbial electrolysis cell," Renewable Energy, Elsevier, vol. 93(C), pages 442-448.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Runxi & Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin, 2021. "Optimizing the recovery pathway of a net-zero energy wastewater treatment model by balancing energy recovery and eco-efficiency," Applied Energy, Elsevier, vol. 298(C).
- Huang, Bao-Cheng & He, Chuan-Shu & Fan, Nian-Si & Jin, Ren-Cun & Yu, Han-Qing, 2020. "Envisaging wastewater-to-energy practices for sustainable urban water pollution control: Current achievements and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Xiong, Yu-Tong & Zhang, Jing & Chen, You-Peng & Guo, Jin-Song & Fang, Fang & Yan, Peng, 2021. "Geographic distribution of net-zero energy wastewater treatment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yapeng Song & Wei Qiao & Jiahao Zhang & Renjie Dong, 2023. "Process Performance and Functional Microbial Community in the Anaerobic Digestion of Chicken Manure: A Review," Energies, MDPI, vol. 16(12), pages 1-22, June.
- Huang, Bao-Cheng & He, Chuan-Shu & Fan, Nian-Si & Jin, Ren-Cun & Yu, Han-Qing, 2020. "Envisaging wastewater-to-energy practices for sustainable urban water pollution control: Current achievements and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Huang, Bao-Cheng & Li, Wen-Wei & Wang, Xu & Lu, Yan & Yu, Han-Qing, 2019. "Customizing anaerobic digestion-coupled processes for energy-positive and sustainable treatment of municipal wastewater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 132-142.
- Di Maria, Francesco & Sisani, Federico & Lasagni, Marzio & Borges, Marisa Soares & Gonzales, Thiago H., 2018. "Replacement of energy crops with bio-waste in existing anaerobic digestion plants: An energetic and environmental analysis," Energy, Elsevier, vol. 152(C), pages 202-213.
- Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
- Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
- Wang, Fei & Fu, Shanfei & Guo, Gang & Jia, Zhen-Zhen & Luo, Sheng-Jun & Guo, Rong-Bo, 2016. "Experimental study on hydrate-based CO2 removal from CH4/CO2 mixture," Energy, Elsevier, vol. 104(C), pages 76-84.
- Ramprakash, Balasubramani & Lindblad, Peter & Eaton-Rye, Julian J. & Incharoensakdi, Aran, 2022. "Current strategies and future perspectives in biological hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Lam, Chor Man & Hsu, Shu-Chien & Alvarado, Valeria & Li, Wing Man, 2020. "Integrated life-cycle data envelopment analysis for techno-environmental performance evaluation on sludge-to-energy systems," Applied Energy, Elsevier, vol. 266(C).
- Yan, Cheng & Zhu, Liandong & Wang, Yanxin, 2016. "Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities,," Applied Energy, Elsevier, vol. 178(C), pages 9-18.
- Li, Demao & Tang, Ruohao & Yu, Liang & Chen, Limei & Chen, Shulin & Xu, Song & Gao, Feng, 2020. "Effects of increasing organic loading rates on reactor performance and the methanogenic community in a new pilot upflow solid reactor for continuously processing food waste," Renewable Energy, Elsevier, vol. 153(C), pages 420-429.
- Ullah, Zia & Zeshan,, 2024. "Effect of catholyte on performance of photosynthetic microbial fuel cell for wastewater treatment and energy recovery," Renewable Energy, Elsevier, vol. 221(C).
- Yemei Li & Yuanyuan Ren & Jiayuan Ji & Yu-You Li & Takuro Kobayashi, 2023. "Anaerobic Membrane Bioreactors for Municipal Wastewater Treatment, Sewage Sludge Digestion and Biogas Upgrading: A Review," Sustainability, MDPI, vol. 15(20), pages 1-17, October.
- He Zhang & Ashish T. Asutosh & Junxue Zhang, 2022. "A quantitative sustainable comparative study of two biogas systems based on energy, emergy and entropy methods in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13583-13609, December.
- Jun-Gyu Park & Won-Beom Shin & Wei-Qi Shi & Hang-Bae Jun, 2019. "Changes of Bacterial Communities in an Anaerobic Digestion and a Bio-Electrochemical Anaerobic Digestion Reactors According to Organic Load," Energies, MDPI, vol. 12(15), pages 1-11, August.
- Yadav, Ashish & Verma, Nishith, 2019. "Efficient hydrogen production using Ni-graphene oxide-dispersed laser-engraved 3D carbon micropillars as electrodes for microbial electrolytic cell," Renewable Energy, Elsevier, vol. 138(C), pages 628-638.
- Sergi Vinardell & Gaetan Blandin & Federico Ferrari & Geoffroy Lesage & Joan Mata-Alvarez & Joan Dosta & Sergi Astals, 2022. "Techno-economic analysis of forward osmosis pre-concentration before an anaerobic membrane bioreactor: Impact of draw solute and membrane material," Post-Print hal-03709623, HAL.
- Cheng, Jun & Ding, Lingkan & Lin, Richen & Yue, Liangchen & Liu, Jianzhong & Zhou, Junhu & Cen, Kefa, 2016. "Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: Effects of physiochemical properties and mix ratios on fermentation performance," Applied Energy, Elsevier, vol. 184(C), pages 1-8.
- Justyna Górka & Małgorzata Cimochowicz-Rybicka & Dominika Poproch, 2022. "Sludge Management at the Kraków-Płaszów WWTP—Case Study," Sustainability, MDPI, vol. 14(13), pages 1-11, June.
- Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
More about this item
Keywords
Anaerobic digestion; Anaerobic membrane bioreactor; Energy recovery; Municipal wastewater; Organic strength;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:158:y:2020:i:c:p:534-540. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.