IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v186y2023ics1364032123005464.html
   My bibliography  Save this article

Opportunities and challenges of micronutrients supplementation and its bioavailability in anaerobic digestion: A critical review

Author

Listed:
  • Bardi, Mohammad Javad
  • Vinardell, Sergi
  • Astals, Sergi
  • Koch, Konrad

Abstract

The opportunities and challenges of applying micronutrients (MiNs) in full-scale anaerobic digestion (AD) plants has been reviewed. The review discusses the underlying mechanisms and the role of different micronutrients (Fe, Ni, Co, Mo, Zn, Cu, Se) in the enhancement of AD performance, as well as their environmental and economic implications in full-scale AD systems. Bioavailability is a key factor affecting the effectiveness of micronutrients application on the biochemical aspects of AD. Accordingly, the technical aspects of AD with a direct impact on bioavailability have been identified and critically addressed. Mono-supplementation is not the most favorable strategy to increase micronutrient bioavailability due to limited solubility, formation of insoluble compounds, interaction with other compounds, and specific microbial requirements. Nonetheless, co-supplementation can increase the bioavailability due to the simultaneous synergetic effects of co-micronutrients supplementation on the biochemical aspects of AD. However, the inconsistency of reported lab-scale results and the lack of protocols or guidelines for analyzing the bioavailability of micronutrients limit results interpretation and full-scale application. The environmental and economic implications of these micronutrients are other critical factors that need further research. The economic results showed that the mono-supplementation can be economically favorable when a methane enhancement of 20% is achieved. Co-supplementation of micronutrients is the most economically feasible option since this strategy allows reducing the total dosage of micronutrients when compared with mono-supplementation.

Suggested Citation

  • Bardi, Mohammad Javad & Vinardell, Sergi & Astals, Sergi & Koch, Konrad, 2023. "Opportunities and challenges of micronutrients supplementation and its bioavailability in anaerobic digestion: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:rensus:v:186:y:2023:i:c:s1364032123005464
    DOI: 10.1016/j.rser.2023.113689
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123005464
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun-Gyu Park & Won-Beom Shin & Wei-Qi Shi & Hang-Bae Jun, 2019. "Changes of Bacterial Communities in an Anaerobic Digestion and a Bio-Electrochemical Anaerobic Digestion Reactors According to Organic Load," Energies, MDPI, vol. 12(15), pages 1-11, August.
    2. Baek, Gahyun & Kim, Jinsu & Lee, Changsoo, 2019. "A review of the effects of iron compounds on methanogenesis in anaerobic environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Romero-Güiza, M.S. & Vila, J. & Mata-Alvarez, J. & Chimenos, J.M. & Astals, S., 2016. "The role of additives on anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1486-1499.
    4. Sohail Khan & Fuzhi Lu & Muhammad Kashif & Peihong Shen, 2021. "Multiple Effects of Different Nickel Concentrations on the Stability of Anaerobic Digestion of Molasses," Sustainability, MDPI, vol. 13(9), pages 1-11, April.
    5. Qiu, L. & Deng, Y.F. & Wang, F. & Davaritouchaee, M. & Yao, Y.Q., 2019. "A review on biochar-mediated anaerobic digestion with enhanced methane recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Yonglan Tian & Huayong Zhang & Lei Zheng & Shusen Li & He Hao & Hai Huang, 2019. "Effect of Zn Addition on the Cd-Containing Anaerobic Fermentation Process: Biodegradation and Microbial Communities," IJERPH, MDPI, vol. 16(16), pages 1-17, August.
    7. Linas Jurgutis & Alvyra Šlepetienė & Jonas Šlepetys & Jurgita Cesevičienė, 2021. "Towards a Full Circular Economy in Biogas Plants: Sustainable Management of Digestate for Growing Biomass Feedstocks and Use as Biofertilizer," Energies, MDPI, vol. 14(14), pages 1-14, July.
    8. Gustavsson, Jenny & Shakeri Yekta, Sepehr & Sundberg, Carina & Karlsson, Anna & Ejlertsson, Jörgen & Skyllberg, Ulf & Svensson, Bo H., 2013. "Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation," Applied Energy, Elsevier, vol. 112(C), pages 473-477.
    9. Bożym, Marta & Florczak, Iwona & Zdanowska, Paulina & Wojdalski, Janusz & Klimkiewicz, Marek, 2015. "An analysis of metal concentrations in food wastes for biogas production," Renewable Energy, Elsevier, vol. 77(C), pages 467-472.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Xianpu & Zhang, Yujia & Yellezuome, Dominic & Wang, Zengzhen & Liu, Xuwei & Liu, Ronghou, 2024. "The effects of co-supplemented Fe, Co and Ni on Fe bioavailability and microbial community structure in mesophilic food waste anaerobic digestion by using response surface methodology," Renewable Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2022. "Recent Advances and Perspectives of Nanotechnology in Anaerobic Digestion: A New Paradigm towards Sludge Biodegradability," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    2. Mosleh Uddin, Md & Wen, Zhiyou & Mba Wright, Mark, 2022. "Techno-economic and environmental impact assessment of using corn stover biochar for manure derived renewable natural gas production," Applied Energy, Elsevier, vol. 321(C).
    3. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Yin, Changkai & Shen, Yanwen & Zhu, Nanwen & Huang, Qiujie & Lou, Ziyang & Yuan, Haiping, 2018. "Anaerobic digestion of waste activated sludge with incineration bottom ash: Enhanced methane production and CO2 sequestration," Applied Energy, Elsevier, vol. 215(C), pages 503-511.
    5. Abdelsalam, E. & Samer, M. & Attia, Y.A. & Abdel-Hadi, M.A. & Hassan, H.E. & Badr, Y., 2016. "Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry," Renewable Energy, Elsevier, vol. 87(P1), pages 592-598.
    6. Sohail Khan & Fuzhi Lu & Muhammad Kashif & Peihong Shen, 2021. "Multiple Effects of Different Nickel Concentrations on the Stability of Anaerobic Digestion of Molasses," Sustainability, MDPI, vol. 13(9), pages 1-11, April.
    7. Huayong Zhang & Meixiao Yin & Shusen Li & Shijia Zhang & Guixuan Han, 2022. "The Removal of Erythromycin and Its Effects on Anaerobic Fermentation," IJERPH, MDPI, vol. 19(12), pages 1-20, June.
    8. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    10. Capson-Tojo, G. & Moscoviz, R. & Astals, S. & Robles, Á. & Steyer, J.-P., 2020. "Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    11. Yapeng Song & Wei Qiao & Jiahao Zhang & Renjie Dong, 2023. "Process Performance and Functional Microbial Community in the Anaerobic Digestion of Chicken Manure: A Review," Energies, MDPI, vol. 16(12), pages 1-22, June.
    12. Huayong Zhang & Di An & Yudong Cao & Yonglan Tian & Jinxian He, 2021. "Modeling the Methane Production Kinetics of Anaerobic Co-Digestion of Agricultural Wastes Using Sigmoidal Functions," Energies, MDPI, vol. 14(2), pages 1-12, January.
    13. Apostolos Spyridonidis & Ioanna A. Vasiliadou & Katerina Stamatelatou, 2022. "Effect of Zeolite on the Methane Production from Chicken Manure Leachate," Sustainability, MDPI, vol. 14(4), pages 1-14, February.
    14. Abbas, Yasir & Yun, Sining & Wang, Ziqi & Zhang, Yongwei & Zhang, Xianmei & Wang, Kaijun, 2021. "Recent advances in bio-based carbon materials for anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    16. Chen, Miao & Liu, Shujun & Yuan, Xufeng & Li, Qing X. & Wang, Fengzhong & Xin, Fengjiao & Wen, Boting, 2021. "Methane production and characteristics of the microbial community in the co-digestion of potato pulp waste and dairy manure amended with biochar," Renewable Energy, Elsevier, vol. 163(C), pages 357-367.
    17. Li, Jianzheng & Wang, Xin & Fan, Yiyang & Chen, Qiyi & Meng, Jia, 2024. "Biosynthesis of NPs CuS/Cu2S and self-assembly with C. beijerinckii for improving lignocellulosic butanol production in staged butyrate-butanol fermentation process," Renewable Energy, Elsevier, vol. 224(C).
    18. Zhu, Xianpu & Zhang, Yujia & Yellezuome, Dominic & Wang, Zengzhen & Liu, Xuwei & Liu, Ronghou, 2024. "The effects of co-supplemented Fe, Co and Ni on Fe bioavailability and microbial community structure in mesophilic food waste anaerobic digestion by using response surface methodology," Renewable Energy, Elsevier, vol. 229(C).
    19. Vanessa S. Schulz & Sebastian Munz & Kerstin Stolzenburg & Jens Hartung & Sebastian Weisenburger & Klaus Mastel & Kurt Möller & Wilhelm Claupein & Simone Graeff-Hönninger, 2018. "Biomass and Biogas Yield of Maize ( Zea mays L.) Grown under Artificial Shading," Agriculture, MDPI, vol. 8(11), pages 1-17, November.
    20. Yonglan Tian & Shusen Li & Ying Li & Huayong Zhang & Xueyue Mi & Hai Huang, 2019. "Cadmium Addition Effects on Anaerobic Digestion with Elevated Temperatures," Energies, MDPI, vol. 12(12), pages 1-11, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:186:y:2023:i:c:s1364032123005464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.