Cyclic transient behavior of the Joule–Brayton based pumped heat electricity storage: Modeling and analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2019.03.056
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Abarr, Miles & Geels, Brendan & Hertzberg, Jean & Montoya, Lupita D., 2017. "Pumped thermal energy storage and bottoming system part A: Concept and model," Energy, Elsevier, vol. 120(C), pages 320-331.
- Walawalkar, Rahul & Apt, Jay & Mancini, Rick, 2007. "Economics of electric energy storage for energy arbitrage and regulation in New York," Energy Policy, Elsevier, vol. 35(4), pages 2558-2568, April.
- Benato, Alberto & Stoppato, Anna, 2018. "Heat transfer fluid and material selection for an innovative Pumped Thermal Electricity Storage system," Energy, Elsevier, vol. 147(C), pages 155-168.
- Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
- Morandin, Matteo & Maréchal, François & Mercangöz, Mehmet & Buchter, Florian, 2012. "Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part B: Alternative system configurations," Energy, Elsevier, vol. 45(1), pages 386-396.
- Benato, Alberto, 2017. "Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system," Energy, Elsevier, vol. 138(C), pages 419-436.
- Abarr, Miles & Hertzberg, Jean & Montoya, Lupita D., 2017. "Pumped Thermal Energy Storage and Bottoming System Part B: Sensitivity analysis and baseline performance," Energy, Elsevier, vol. 119(C), pages 601-611.
- Jockenhöfer, Henning & Steinmann, Wolf-Dieter & Bauer, Dan, 2018. "Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration," Energy, Elsevier, vol. 145(C), pages 665-676.
- McTigue, Joshua D. & White, Alexander J. & Markides, Christos N., 2015. "Parametric studies and optimisation of pumped thermal electricity storage," Applied Energy, Elsevier, vol. 137(C), pages 800-811.
- Morandin, Matteo & Maréchal, François & Mercangöz, Mehmet & Buchter, Florian, 2012. "Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case," Energy, Elsevier, vol. 45(1), pages 375-385.
- Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
- Steinmann, W.D., 2014. "The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage," Energy, Elsevier, vol. 69(C), pages 543-552.
- Kim, Young-Min & Shin, Dong-Gil & Lee, Sun-Youp & Favrat, Daniel, 2013. "Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage," Energy, Elsevier, vol. 49(C), pages 484-501.
- Haisheng Chen & Xinjing Zhang & Jinchao Liu & Chunqing Tan, 2013. "Compressed Air Energy Storage," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Frate, Guido Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2021. "Energy storage for grid-scale applications: Technology review and economic feasibility analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1754-1772.
- Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2023. "Operating mode of Brayton-cycle-based pumped thermal electricity storage system: Constant compression ratio or constant rotational speed?," Applied Energy, Elsevier, vol. 343(C).
- Yang, He & Li, Jinduo & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2022. "Dynamic characteristics and control strategy of pumped thermal electricity storage with reversible Brayton cycle," Renewable Energy, Elsevier, vol. 198(C), pages 1341-1353.
- Ai, Wei & Wang, Liang & Lin, Xipeng & Zhang, Shuang & Bai, Yakai & Chen, Haisheng, 2023. "Mathematical and thermo-economic analysis of thermal insulation for thermal energy storage applications," Renewable Energy, Elsevier, vol. 213(C), pages 233-245.
- Xue, X.J. & Wang, H.N. & Wang, J.H. & Yang, B. & Yan, J. & Zhao, C.Y., 2024. "Experimental and numerical investigation on latent heat/cold stores for advanced pumped-thermal energy storage," Energy, Elsevier, vol. 300(C).
- Xue, X.J. & Zhao, C.Y., 2023. "Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores," Applied Energy, Elsevier, vol. 329(C).
- Ge, Y.Q. & Zhao, Y. & Zhao, C.Y., 2021. "Transient simulation and thermodynamic analysis of pumped thermal electricity storage based on packed-bed latent heat/cold stores," Renewable Energy, Elsevier, vol. 174(C), pages 939-951.
- Blanquiceth, J. & Cardemil, J.M. & Henríquez, M. & Escobar, R., 2023. "Thermodynamic evaluation of a pumped thermal electricity storage system integrated with large-scale thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2020. "Combined cooling, heating, and power generation performance of pumped thermal electricity storage system based on Brayton cycle," Applied Energy, Elsevier, vol. 278(C).
- Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2023. "Parametric optimisation and thermo-economic analysis of Joule–Brayton cycle-based pumped thermal electricity storage system under various charging–discharging periods," Energy, Elsevier, vol. 263(PE).
- Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
- Zhao, Yao & Huang, Jiaxing & Song, Jian & Ding, Yulong, 2024. "Thermodynamic investigation of a Carnot battery based multi-energy system with cascaded latent thermal (heat and cold) energy stores," Energy, Elsevier, vol. 296(C).
- Yang, He & Li, Jinduo & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2023. "Dynamic performance for discharging process of pumped thermal electricity storage with reversible Brayton cycle," Energy, Elsevier, vol. 263(PD).
- Liang, Ting & Vecchi, Andrea & Knobloch, Kai & Sciacovelli, Adriano & Engelbrecht, Kurt & Li, Yongliang & Ding, Yulong, 2022. "Key components for Carnot Battery: Technology review, technical barriers and selection criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Guido Francesco Frate & Lorenzo Ferrari & Umberto Desideri, 2022. "Techno-Economic Comparison of Brayton Pumped Thermal Electricity Storage (PTES) Systems Based on Solid and Liquid Sensible Heat Storage," Energies, MDPI, vol. 15(24), pages 1-28, December.
- Shi, Lei & Zhang, Shuai & Arshad, Adeel & Hu, Yanwei & He, Yurong & Yan, Yuying, 2021. "Thermo-physical properties prediction of carbon-based magnetic nanofluids based on an artificial neural network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
- Wang, Liang & Lin, Xipeng & Zhang, Han & Peng, Long & Ling, Haoshu & Zhang, Shuang & Chen, Haisheng, 2023. "Thermodynamic analysis and optimization of pumped thermal–liquid air energy storage (PTLAES)," Applied Energy, Elsevier, vol. 332(C).
- Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2022. "Technical and economic analysis of Brayton-cycle-based pumped thermal electricity storage systems with direct and indirect thermal energy storage," Energy, Elsevier, vol. 239(PC).
- Petrollese, Mario & Cascetta, Mario & Tola, Vittorio & Cocco, Daniele & Cau, Giorgio, 2022. "Pumped thermal energy storage systems integrated with a concentrating solar power section: Conceptual design and performance evaluation," Energy, Elsevier, vol. 247(C).
- Wang, Liang & Lin, Xipeng & Zhang, Han & Peng, Long & Chen, Haisheng, 2021. "Brayton-cycle-based pumped heat electricity storage with innovative operation mode of thermal energy storage array," Applied Energy, Elsevier, vol. 291(C).
- Frate, Guido Francesco & Baccioli, Andrea & Bernardini, Leonardo & Ferrari, Lorenzo, 2022. "Assessment of the off-design performance of a solar thermally-integrated pumped-thermal energy storage," Renewable Energy, Elsevier, vol. 201(P1), pages 636-650.
- Zhang, Lianjie & Deng, Tianrui & Klemeš, Jiří Jaromír & Zeng, Min & Ma, Ting & Wang, Qiuwang, 2021. "Supercritical CO2 Brayton cycle at different heat source temperatures and its analysis under leakage and disturbance conditions," Energy, Elsevier, vol. 237(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
- Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2020. "Combined cooling, heating, and power generation performance of pumped thermal electricity storage system based on Brayton cycle," Applied Energy, Elsevier, vol. 278(C).
- Frate, Guido Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2021. "Energy storage for grid-scale applications: Technology review and economic feasibility analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1754-1772.
- Liang, Ting & Vecchi, Andrea & Knobloch, Kai & Sciacovelli, Adriano & Engelbrecht, Kurt & Li, Yongliang & Ding, Yulong, 2022. "Key components for Carnot Battery: Technology review, technical barriers and selection criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2023. "Operating mode of Brayton-cycle-based pumped thermal electricity storage system: Constant compression ratio or constant rotational speed?," Applied Energy, Elsevier, vol. 343(C).
- Wang, Liang & Lin, Xipeng & Zhang, Han & Peng, Long & Chen, Haisheng, 2021. "Brayton-cycle-based pumped heat electricity storage with innovative operation mode of thermal energy storage array," Applied Energy, Elsevier, vol. 291(C).
- Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
- Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2022. "Technical and economic analysis of Brayton-cycle-based pumped thermal electricity storage systems with direct and indirect thermal energy storage," Energy, Elsevier, vol. 239(PC).
- Dong Zhao & Shuyan Sun & Hosein Alavi, 2022. "Simulation and optimization of a Carnot battery process including a heat pump/organic Rankine cycle with considering the role of the regenerator [Robust multi-objective optimal design of islanded h," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 870-878.
- Kum-Jung Lee & Seok-Ho Seo & Junhyun Cho & Si-Doek Oh & Sang-Ok Choi & Ho-Young Kwak, 2022. "Exergy and Thermoeconomic Analyses of a Carnot Battery System Comprising an Air Heat Pump and Steam Turbine," Energies, MDPI, vol. 15(22), pages 1-19, November.
- Yong, Qingqing & Jin, Kaiyuan & Li, Xiaobo & Yang, Ronggui, 2023. "Thermo-economic analysis for a novel grid-scale pumped thermal electricity storage system coupled with a coal-fired power plant," Energy, Elsevier, vol. 280(C).
- Petrollese, Mario & Cascetta, Mario & Tola, Vittorio & Cocco, Daniele & Cau, Giorgio, 2022. "Pumped thermal energy storage systems integrated with a concentrating solar power section: Conceptual design and performance evaluation," Energy, Elsevier, vol. 247(C).
- Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2023. "Parametric optimisation and thermo-economic analysis of Joule–Brayton cycle-based pumped thermal electricity storage system under various charging–discharging periods," Energy, Elsevier, vol. 263(PE).
- Guido Francesco Frate & Lorenzo Ferrari & Umberto Desideri, 2020. "Rankine Carnot Batteries with the Integration of Thermal Energy Sources: A Review," Energies, MDPI, vol. 13(18), pages 1-28, September.
- Frate, Guido Francesco & Baccioli, Andrea & Bernardini, Leonardo & Ferrari, Lorenzo, 2022. "Assessment of the off-design performance of a solar thermally-integrated pumped-thermal energy storage," Renewable Energy, Elsevier, vol. 201(P1), pages 636-650.
- Steinmann, Wolf-Dieter & Bauer, Dan & Jockenhöfer, Henning & Johnson, Maike, 2019. "Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity," Energy, Elsevier, vol. 183(C), pages 185-190.
- Alberto Benato & Francesco De Vanna & Anna Stoppato, 2022. "Levelling the Photovoltaic Power Profile with the Integrated Energy Storage System," Energies, MDPI, vol. 15(24), pages 1-21, December.
- Abarr, Miles & Geels, Brendan & Hertzberg, Jean & Montoya, Lupita D., 2017. "Pumped thermal energy storage and bottoming system part A: Concept and model," Energy, Elsevier, vol. 120(C), pages 320-331.
- Daniele Fiaschi & Giampaolo Manfrida & Karolina Petela & Federico Rossi & Adalgisa Sinicropi & Lorenzo Talluri, 2020. "Exergo-Economic and Environmental Analysis of a Solar Integrated Thermo-Electric Storage," Energies, MDPI, vol. 13(13), pages 1-21, July.
- Daniele Fiaschi & Giampaolo Manfrida & Karolina Petela & Lorenzo Talluri, 2019. "Thermo-Electric Energy Storage with Solar Heat Integration: Exergy and Exergo-Economic Analysis," Energies, MDPI, vol. 12(4), pages 1-21, February.
More about this item
Keywords
Pumped heat electricity storage; Pumped thermal electricity storage; Brayton; Thermal energy storage; Heat storage; Energy storage;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:111:y:2019:i:c:p:523-534. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.