Dynamic performance for discharging process of pumped thermal electricity storage with reversible Brayton cycle
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.125930
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Deng, Tianrui & Li, Xionghui & Wang, Qiuwang & Ma, Ting, 2019. "Dynamic modelling and transient characteristics of supercritical CO2 recompression Brayton cycle," Energy, Elsevier, vol. 180(C), pages 292-302.
- Guo, Juncheng & Cai, Ling & Chen, Jincan & Zhou, Yinghui, 2016. "Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system," Energy, Elsevier, vol. 113(C), pages 693-701.
- Wang, Liang & Lin, Xipeng & Zhang, Han & Peng, Long & Chen, Haisheng, 2021. "Brayton-cycle-based pumped heat electricity storage with innovative operation mode of thermal energy storage array," Applied Energy, Elsevier, vol. 291(C).
- McTigue, Joshua D. & White, Alexander J. & Markides, Christos N., 2015. "Parametric studies and optimisation of pumped thermal electricity storage," Applied Energy, Elsevier, vol. 137(C), pages 800-811.
- Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2020. "Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system," Energy, Elsevier, vol. 201(C).
- Bauer, Thomas & Pfleger, Nicole & Breidenbach, Nils & Eck, Markus & Laing, Doerte & Kaesche, Stefanie, 2013. "Material aspects of Solar Salt for sensible heat storage," Applied Energy, Elsevier, vol. 111(C), pages 1114-1119.
- Wang, Liang & Lin, Xipeng & Chai, Lei & Peng, Long & Yu, Dong & Chen, Haisheng, 2019. "Cyclic transient behavior of the Joule–Brayton based pumped heat electricity storage: Modeling and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 523-534.
- Sciacovelli, Adriano & Li, Yongliang & Chen, Haisheng & Wu, Yuting & Wang, Jihong & Garvey, Seamus & Ding, Yulong, 2017. "Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance," Applied Energy, Elsevier, vol. 185(P1), pages 16-28.
- He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhao, Yao & Huang, Jiaxing & Song, Jian & Ding, Yulong, 2024. "Thermodynamic investigation of a Carnot battery based multi-energy system with cascaded latent thermal (heat and cold) energy stores," Energy, Elsevier, vol. 296(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, He & Li, Jinduo & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2022. "Dynamic characteristics and control strategy of pumped thermal electricity storage with reversible Brayton cycle," Renewable Energy, Elsevier, vol. 198(C), pages 1341-1353.
- Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2023. "Parametric optimisation and thermo-economic analysis of Joule–Brayton cycle-based pumped thermal electricity storage system under various charging–discharging periods," Energy, Elsevier, vol. 263(PE).
- Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
- Frate, Guido Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2021. "Energy storage for grid-scale applications: Technology review and economic feasibility analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1754-1772.
- Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2023. "Operating mode of Brayton-cycle-based pumped thermal electricity storage system: Constant compression ratio or constant rotational speed?," Applied Energy, Elsevier, vol. 343(C).
- Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2022. "Technical and economic analysis of Brayton-cycle-based pumped thermal electricity storage systems with direct and indirect thermal energy storage," Energy, Elsevier, vol. 239(PC).
- Petrollese, Mario & Cascetta, Mario & Tola, Vittorio & Cocco, Daniele & Cau, Giorgio, 2022. "Pumped thermal energy storage systems integrated with a concentrating solar power section: Conceptual design and performance evaluation," Energy, Elsevier, vol. 247(C).
- Alberto Benato & Francesco De Vanna & Anna Stoppato, 2022. "Levelling the Photovoltaic Power Profile with the Integrated Energy Storage System," Energies, MDPI, vol. 15(24), pages 1-21, December.
- Ge, Y.Q. & Zhao, Y. & Zhao, C.Y., 2021. "Transient simulation and thermodynamic analysis of pumped thermal electricity storage based on packed-bed latent heat/cold stores," Renewable Energy, Elsevier, vol. 174(C), pages 939-951.
- Wang, Liang & Lin, Xipeng & Zhang, Han & Peng, Long & Chen, Haisheng, 2021. "Brayton-cycle-based pumped heat electricity storage with innovative operation mode of thermal energy storage array," Applied Energy, Elsevier, vol. 291(C).
- Xue, X.J. & Zhao, C.Y., 2023. "Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores," Applied Energy, Elsevier, vol. 329(C).
- Zhao, Yao & Huang, Jiaxing & Song, Jian & Ding, Yulong, 2024. "Thermodynamic investigation of a Carnot battery based multi-energy system with cascaded latent thermal (heat and cold) energy stores," Energy, Elsevier, vol. 296(C).
- Wang, Liang & Lin, Xipeng & Zhang, Han & Peng, Long & Ling, Haoshu & Zhang, Shuang & Chen, Haisheng, 2023. "Thermodynamic analysis and optimization of pumped thermal–liquid air energy storage (PTLAES)," Applied Energy, Elsevier, vol. 332(C).
- Liang, Ting & Vecchi, Andrea & Knobloch, Kai & Sciacovelli, Adriano & Engelbrecht, Kurt & Li, Yongliang & Ding, Yulong, 2022. "Key components for Carnot Battery: Technology review, technical barriers and selection criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
- Marcin Jankowski & Anna Pałac & Krzysztof Sornek & Wojciech Goryl & Maciej Żołądek & Maksymilian Homa & Mariusz Filipowicz, 2024. "Status and Development Perspectives of the Compressed Air Energy Storage (CAES) Technologies—A Literature Review," Energies, MDPI, vol. 17(9), pages 1-46, April.
- Benato, Alberto, 2017. "Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system," Energy, Elsevier, vol. 138(C), pages 419-436.
- Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
- Roskosch, Dennis & Venzik, Valerius & Atakan, Burak, 2020. "Potential analysis of pumped heat electricity storages regarding thermodynamic efficiency," Renewable Energy, Elsevier, vol. 147(P3), pages 2865-2873.
- Bai, Jianshu & Chen, Wei & Xie, Ningning & Ma, Linrui & Wang, Yazhou & Zhang, Tong & Xue, Xiaodai, 2023. "Dynamic characteristics and optimizations of the proposed combined cold and power system with integrated advanced adiabatic compressed air energy storage and double-effect compression-absorption refri," Energy, Elsevier, vol. 283(C).
More about this item
Keywords
Pumped thermal electricity storage; Reversible Brayton cycle; Heat engine cycle; Dynamic response; Control strategy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pd:s036054422202816x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.