IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5880-d637382.html
   My bibliography  Save this article

Co-Digestion of Kitchen Waste with Grass and Leaves after Hyperthermophilic Pretreatment for Methane and Hydrogen Production

Author

Listed:
  • Przemysław Liczbiński

    (Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland)

  • Sebastian Borowski

    (Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland)

Abstract

The study investigated co-digestion batch experiments using kitchen waste (KW) and garden waste (GW) collected from individual households. Grass and leaves were first subjected to a 3-day hyperthermophilic pretreatment at 70 °C and 80 °C and then co-digested with kitchen waste at 35 °C and 55 °C. The hyperthermophilic pretreatment resulted in the solubilization of organic material with the release of fatty acids, whereas the biogas yield was negligible. In the second stage, the greatest methane yield of 387 NmL/gVS was achieved for the mono-digestion of leaves, whereas the co-digestion of grass with 50% KW gave the highest hydrogen production of 88 NmL/gVS. Considering the overall process performance, the best operating conditions were established using a 3-day hyperthermophilic pretreatment at 70 °C, followed by co-digestion at 55 °C in the second stage for the mixture of 25% garden waste with 75% KW.

Suggested Citation

  • Przemysław Liczbiński & Sebastian Borowski, 2021. "Co-Digestion of Kitchen Waste with Grass and Leaves after Hyperthermophilic Pretreatment for Methane and Hydrogen Production," Energies, MDPI, vol. 14(18), pages 1-9, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5880-:d:637382
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5880/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5880/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Przemysław Liczbiński & Sebastian Borowski, 2020. "Hyperthermophilic Treatment of Grass and Leaves to Produce Hydrogen, Methane and VFA-Rich Digestate: Preliminary Results," Energies, MDPI, vol. 13(11), pages 1-12, June.
    2. Borowski, Sebastian & Kucner, Marcin & Czyżowska, Agata & Berłowska, Joanna, 2016. "Co-digestion of poultry manure and residues from enzymatic saccharification and dewatering of sugar beet pulp," Renewable Energy, Elsevier, vol. 99(C), pages 492-500.
    3. Sivagurunathan, Periyasamy & Kumar, Gopalakrishnan & Mudhoo, Ackmez & Rene, Eldon R. & Saratale, Ganesh Dattatraya & Kobayashi, Takuro & Xu, Kaiqin & Kim, Sang-Hyoun & Kim, Dong-Hoon, 2017. "Fermentative hydrogen production using lignocellulose biomass: An overview of pre-treatment methods, inhibitor effects and detoxification experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 28-42.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narisetty, Vivek & Narisetty, Sudheera & Jacob, Samuel & Kumar, Deepak & Leeke, Gary A. & Chandel, Anuj Kumar & Singh, Vijai & Srivastava, Vimal Chandra & Kumar, Vinod, 2022. "Biological production and recovery of 2,3-butanediol using arabinose from sugar beet pulp by Enterobacter ludwigii," Renewable Energy, Elsevier, vol. 191(C), pages 394-404.
    2. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    3. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    4. Lucas van der Maas & Jasper L. S. P. Driessen & Solange I. Mussatto, 2021. "Effects of Inhibitory Compounds Present in Lignocellulosic Biomass Hydrolysates on the Growth of Bacillus subtilis," Energies, MDPI, vol. 14(24), pages 1-12, December.
    5. Cieciura-Włoch, Weronika & Borowski, Sebastian & Otlewska, Anna, 2020. "Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation," Renewable Energy, Elsevier, vol. 153(C), pages 1226-1237.
    6. Zagrodnik, Roman & Duber, Anna, 2024. "Continuous dark-photo fermentative H2 production from synthetic lignocellulose hydrolysate with different photoheterotrophic cultures: Sequential vs. co-culture processes," Energy, Elsevier, vol. 290(C).
    7. Shuang Liu & Wenzhe Li & Guoxiang Zheng & Haiyan Yang & Longhai Li, 2020. "Optimization of Cattle Manure and Food Waste Co-Digestion for Biohydrogen Production in a Mesophilic Semi-Continuous Process," Energies, MDPI, vol. 13(15), pages 1-13, July.
    8. Joanna Berlowska & Katarzyna Pielech-Przybylska & Maria Balcerek & Weronika Cieciura & Sebastian Borowski & Dorota Kregiel, 2017. "Integrated Bioethanol Fermentation/Anaerobic Digestion for Valorization of Sugar Beet Pulp," Energies, MDPI, vol. 10(9), pages 1-16, August.
    9. Singh, Neeraj Kumar & Singh, Rajesh, 2022. "Co-factors applicability in hydrogen production from rice straw hydrolysate in a bioelectrochemical system," Energy, Elsevier, vol. 255(C).
    10. Tańczuk, M. & Junga, R. & Werle, S. & Chabiński, M. & Ziółkowski, Ł., 2019. "Experimental analysis of the fixed bed gasification process of the mixtures of the chicken manure with biomass," Renewable Energy, Elsevier, vol. 136(C), pages 1055-1063.
    11. Yiyang Liu & Jingluo Min & Xingyu Feng & Yue He & Jinze Liu & Yixiao Wang & Jun He & Hainam Do & Valérie Sage & Gang Yang & Yong Sun, 2020. "A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance," Energies, MDPI, vol. 13(10), pages 1-27, May.
    12. Shao, Weilan & Wang, Qiang & Rupani, Parveen Fatemeh & Krishnan, Santhana & Ahmad, Fiaz & Rezania, Shahabaldin & Rashid, Muhammad Adnan & Sha, Chong & Md Din, Mohd Fadhil, 2020. "Biohydrogen production via thermophilic fermentation: A prospective application of Thermotoga species," Energy, Elsevier, vol. 197(C).
    13. Luz Breton-Deval & Ilse Salinas-Peralta & Jaime Santiago Alarcón Aguirre & Belkis Sulbarán-Rangel & Kelly Joel Gurubel Tun, 2020. "Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community during the Anaerobic Digestion of Hydrolyzed Corncob," Energies, MDPI, vol. 14(1), pages 1-14, December.
    14. Karim, Ahasanul & Islam, M. Amirul & Mishra, Puranjan & Yousuf, Abu & Faizal, Che Ku Mohammad & Khan, Md. Maksudur Rahman, 2021. "Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Lin, Richen & Deng, Chen & Cheng, Jun & Murphy, Jerry D., 2020. "Low concentrations of furfural facilitate biohydrogen production in dark fermentation using Enterobacter aerogenes," Renewable Energy, Elsevier, vol. 150(C), pages 23-30.
    16. Basak, Bikram & Jeon, Byong-Hun & Kim, Tae Hyun & Lee, Jae-Cheol & Chatterjee, Pradip Kumar & Lim, Hankwon, 2020. "Dark fermentative hydrogen production from pretreated lignocellulosic biomass: Effects of inhibitory byproducts and recent trends in mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    17. Fuchs, Werner & Wang, Xuemei & Gabauer, Wolfgang & Ortner, Markus & Li, Zifu, 2018. "Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 186-199.
    18. Alessandra Morana & Giuseppe Squillaci & Susana M. Paixão & Luís Alves & Francesco La Cara & Patrícia Moura, 2017. "Development of an Energy Biorefinery Model for Chestnut ( Castanea sativa Mill.) Shells," Energies, MDPI, vol. 10(10), pages 1-14, September.
    19. Rafał Łukajtis & Karolina Kucharska & Iwona Hołowacz & Piotr Rybarczyk & Katarzyna Wychodnik & Edyta Słupek & Paulina Nowak & Marian Kamiński, 2018. "Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation," Energies, MDPI, vol. 11(3), pages 1-24, March.
    20. Antony V. Samrot & Deenadhayalan Rajalakshmi & Mahendran Sathiyasree & Subramanian Saigeetha & Kasirajan Kasipandian & Nachiyar Valli & Nellore Jayshree & Pandurangan Prakash & Nagarajan Shobana, 2023. "A Review on Biohydrogen Sources, Production Routes, and Its Application as a Fuel Cell," Sustainability, MDPI, vol. 15(16), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5880-:d:637382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.