IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v93y2016icp291-301.html
   My bibliography  Save this article

Effect of tilt angle and connection mode of PVT modules on the energy efficiency of a hot water system for high-rise residential buildings

Author

Listed:
  • Sun, L.L.
  • Li, M.
  • Yuan, Y.P.
  • Cao, X.L.
  • Lei, B.
  • Yu, N.Y.

Abstract

The tilt angle and connection mode of PVT modules are critical factors influencing the energy efficiency of PVT systems. To evaluate their effect, we built a PVT hot water system which is naturally driven by gravity and the PVT modules are installed on vertical facades of high-rise residential buildings. We develop a dynamic model for the simulation of the PVT hot water system. The simulation results are in good agreement with indoor experimental data. Compared with parallel connection, electric power for series connection decreases by 2.0%, thermal energy increases by 11.4% and total energy increases by 5.4%. The connection mode has more obvious influences on thermal energy than electrical power. Considering only total energy, PVT modules with a tilt angle of 20° can produce maximum energy benefits. However, the projection lengths of PVT modules should also be considered when selecting the optimum tilt angle. The optimum tilt angle is chosen as 40° when both total energy and projection length are considered. These findings are good references for the installation of PVT modules on vertical facades of high-rise residential buildings.

Suggested Citation

  • Sun, L.L. & Li, M. & Yuan, Y.P. & Cao, X.L. & Lei, B. & Yu, N.Y., 2016. "Effect of tilt angle and connection mode of PVT modules on the energy efficiency of a hot water system for high-rise residential buildings," Renewable Energy, Elsevier, vol. 93(C), pages 291-301.
  • Handle: RePEc:eee:renene:v:93:y:2016:i:c:p:291-301
    DOI: 10.1016/j.renene.2016.02.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116301768
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.02.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Wei & Chow, Tin-Tai & Ji, Jie & Lu, Jianping & Pei, Gang & Chan, Lok-shun, 2006. "Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water," Applied Energy, Elsevier, vol. 83(3), pages 199-210, March.
    2. Othman, M.Y. & Hamid, S.A. & Tabook, M.A.S. & Sopian, K. & Roslan, M.H. & Ibarahim, Z., 2016. "Performance analysis of PV/T Combi with water and air heating system: An experimental study," Renewable Energy, Elsevier, vol. 86(C), pages 716-722.
    3. Sun, Liangliang & Lu, Lin & Yang, Hongxing, 2012. "Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles," Applied Energy, Elsevier, vol. 90(1), pages 233-240.
    4. Chow, T.T. & Chan, A.L.S. & Fong, K.F. & Lin, Z. & He, W. & Ji, J., 2009. "Annual performance of building-integrated photovoltaic/water-heating system for warm climate application," Applied Energy, Elsevier, vol. 86(5), pages 689-696, May.
    5. Othman, Mohd Yusof & Ibrahim, Adnan & Jin, Goh Li & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2013. "Photovoltaic-thermal (PV/T) technology – The future energy technology," Renewable Energy, Elsevier, vol. 49(C), pages 171-174.
    6. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    7. He, Wei & Hong, Xiaoqiang & Zhao, Xudong & Zhang, Xingxing & Shen, Jinchun & Ji, Jie, 2015. "Operational performance of a novel heat pump assisted solar façade loop-heat-pipe water heating system," Applied Energy, Elsevier, vol. 146(C), pages 371-382.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Zhao & Yasheng Ji & Yanping Yuan & Zhaoli Zhang & Jun Lu, 2018. "Energy-Saving Analysis of Solar Heating System with PCM Storage Tank," Energies, MDPI, vol. 11(1), pages 1-18, January.
    2. Yuanyuan Li & Xiaoyu Xu & Daorina Bao & Bakhramzhan Rasakhodzhaev & Akhadov Jobir & Chun Chang & Mingzhi Zhao, 2023. "Research on Hydrogen Production System Technology Based on Photovoltaic-Photothermal Coupling Electrolyzer," Energies, MDPI, vol. 16(24), pages 1-27, December.
    3. Khordehgah, Navid & Guichet, Valentin & Lester, Stephen P. & Jouhara, Hussam, 2019. "Computational study and experimental validation of a solar photovoltaics and thermal technology," Renewable Energy, Elsevier, vol. 143(C), pages 1348-1356.
    4. Xun Yang & Teng Xiong & Jing Liang Dong & Wen Xin Li & Yong Wang, 2017. "Investigation of the Dynamic Melting Process in a Thermal Energy Storage Unit Using a Helical Coil Heat Exchanger," Energies, MDPI, vol. 10(8), pages 1-18, August.
    5. Kuo, Chung-Feng Jeffrey & Yang, Pei-Chung & Umar, Mega Lazuardi & Lan, Wei-Lun, 2019. "A bifacial photovoltaic thermal system design with parameter optimization and performance beneficial validation," Applied Energy, Elsevier, vol. 247(C), pages 335-349.
    6. Zhao, Juan & Yuan, Yanping & Haghighat, Fariborz & Lu, Jun & Feng, Guohui, 2019. "Investigation of energy performance and operational schemes of a Tibet-focused PCM-integrated solar heating system employing a dynamic energy simulation model," Energy, Elsevier, vol. 172(C), pages 141-154.
    7. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    8. Xiang, Bo & Cao, Xiaoling & Yuan, Yanping & Hasanuzzaman, M. & Zeng, Chao & Ji, Yasheng & Sun, Liangliang, 2018. "A novel hybrid energy system combined with solar-road and soil-regenerator: Sensitivity analysis and optimization," Renewable Energy, Elsevier, vol. 129(PA), pages 419-430.
    9. Yang, Xiaojiao & Sun, Liangliang & Yuan, Yanping & Zhao, Xudong & Cao, Xiaoling, 2018. "Experimental investigation on performance comparison of PV/T-PCM system and PV/T system," Renewable Energy, Elsevier, vol. 119(C), pages 152-159.
    10. Xiaojiao Yang & Jinzhi Zhou & Yanping Yuan, 2019. "Energy Performance of an Encapsulated Phase Change Material PV/T System," Energies, MDPI, vol. 12(20), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    2. Chen, Fangliang & Yin, Huiming, 2016. "Fabrication and laboratory-based performance testing of a building-integrated photovoltaic-thermal roofing panel," Applied Energy, Elsevier, vol. 177(C), pages 271-284.
    3. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    5. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    6. Widyolar, Bennett K. & Abdelhamid, Mahmoud & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2017. "Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 101(C), pages 1379-1389.
    7. Herrando, María & Fantoni, Guillermo & Cubero, Ana & Simón-Allué, Raquel & Guedea, Isabel & Fueyo, Norberto, 2023. "Numerical analysis of the fluid flow and heat transfer of a hybrid PV-thermal collector and performance assessment," Renewable Energy, Elsevier, vol. 209(C), pages 122-132.
    8. Herrando, María & Ramos, Alba & Zabalza, Ignacio & Markides, Christos N., 2019. "A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors," Applied Energy, Elsevier, vol. 235(C), pages 1583-1602.
    9. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Han, Jun, 2013. "Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade," Applied Energy, Elsevier, vol. 112(C), pages 646-656.
    10. Nosrat, Amir & Pearce, Joshua M., 2011. "Dispatch strategy and model for hybrid photovoltaic and trigeneration power systems," Applied Energy, Elsevier, vol. 88(9), pages 3270-3276.
    11. Hu, Zhongting & He, Wei & Ji, Jie & Hu, Dengyun & Lv, Song & Chen, Hongbing & Shen, Zhihe, 2017. "Comparative study on the annual performance of three types of building integrated photovoltaic (BIPV) Trombe wall system," Applied Energy, Elsevier, vol. 194(C), pages 81-93.
    12. Agrawal, Basant & Tiwari, G.N., 2010. "Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions," Applied Energy, Elsevier, vol. 87(2), pages 417-426, February.
    13. Mojiri, Ahmad & Stanley, Cameron & Rodriguez-Sanchez, David & Everett, Vernie & Blakers, Andrew & Rosengarten, Gary, 2016. "A spectral-splitting PV–thermal volumetric solar receiver," Applied Energy, Elsevier, vol. 169(C), pages 63-71.
    14. M. M. Hasan & Shakhawat Hossain & M. Mofijur & Zobaidul Kabir & Irfan Anjum Badruddin & T. M. Yunus Khan & Esam Jassim, 2023. "Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions," Energies, MDPI, vol. 16(18), pages 1-30, September.
    15. Al-Shamani, Ali Najah & Yazdi, Mohammad H. & Alghoul, M.A. & Abed, Azher M. & Ruslan, M.H. & Mat, Sohif & Sopian, K., 2014. "Nanofluids for improved efficiency in cooling solar collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 348-367.
    16. Liang, Ruobing & Pan, Qiangguang & Wang, Peng & Zhang, Jili, 2018. "Experiment research of solar PV/T cogeneration system on the building façade driven by a refrigerant pump," Energy, Elsevier, vol. 161(C), pages 744-752.
    17. Gaur, Ankita & Tiwari, G.N., 2014. "Performance of a-Si thin film PV modules with and without water flow: An experimental validation," Applied Energy, Elsevier, vol. 128(C), pages 184-191.
    18. Abdelhamid, Mahmoud & Widyolar, Bennett K. & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2016. "Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector," Applied Energy, Elsevier, vol. 182(C), pages 68-79.
    19. Tripathy, M. & Joshi, H. & Panda, S.K., 2017. "Energy payback time and life-cycle cost analysis of building integrated photovoltaic thermal system influenced by adverse effect of shadow," Applied Energy, Elsevier, vol. 208(C), pages 376-389.
    20. Zhang, Weilong & Lu, Lin & Peng, Jinqing, 2017. "Evaluation of potential benefits of solar photovoltaic shadings in Hong Kong," Energy, Elsevier, vol. 137(C), pages 1152-1158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:93:y:2016:i:c:p:291-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.