IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v146y2015icp371-382.html
   My bibliography  Save this article

Operational performance of a novel heat pump assisted solar façade loop-heat-pipe water heating system

Author

Listed:
  • He, Wei
  • Hong, Xiaoqiang
  • Zhao, Xudong
  • Zhang, Xingxing
  • Shen, Jinchun
  • Ji, Jie

Abstract

This paper aims to present an investigation into the operational performance of a novel heat pump assisted solar façade loop-heat-pipe (LHP) water heating system using both theoretical and experimental methods. This involved (1) development of a computer numerical model; (2) simulation of the operational performance of the system by using the model; (3) test rig construction; and (4) dedicated experiment for verification of the model. It was found that the established model is able to predict the operational performance of the system at a reasonable accuracy. Analyses of the research results indicated that under the selected testing conditions, the average thermal efficiency of the LHP module was around 71%, much higher than that of the loop heat pipe without heat pump assistance. The thermal efficiency of the LHP module grew when the heat pump was turned-on and fell when the heat pump was turned-off. The water temperature remained a steadily growing trend throughout the heat pump turned-on period. Neglecting the heat loss of the water tank, the highest coefficient of the performance could reach up to 6.14 and its average value was around 4.93. In overall, the system is a new façade integrated, highly efficient and aesthetically appealing solar water heating configuration; wide deployment of the system will help reduce fossil fuel consumption in the building sector and carbon emission to the environment.

Suggested Citation

  • He, Wei & Hong, Xiaoqiang & Zhao, Xudong & Zhang, Xingxing & Shen, Jinchun & Ji, Jie, 2015. "Operational performance of a novel heat pump assisted solar façade loop-heat-pipe water heating system," Applied Energy, Elsevier, vol. 146(C), pages 371-382.
  • Handle: RePEc:eee:appene:v:146:y:2015:i:c:p:371-382
    DOI: 10.1016/j.apenergy.2015.01.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915001324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.01.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    2. Meena, P. & Rittidech, S. & Poomsa-ad, N., 2007. "Application of closed-loop oscillating heat-pipe with check valves (CLOHP/CV) air-preheater for reduced relative-humidity in drying systems," Applied Energy, Elsevier, vol. 84(5), pages 553-564, May.
    3. Meena, P. & Rittidech, S. & Poomsa-ad, N., 2007. "Closed-loop oscillating heat-pipe with check valves (CLOHP/CVs) air-preheater for reducing relative humidity in drying systems," Applied Energy, Elsevier, vol. 84(4), pages 363-373, April.
    4. Chow, T.T. & Pei, G. & Fong, K.F. & Lin, Z. & Chan, A.L.S. & He, M., 2010. "Modeling and application of direct-expansion solar-assisted heat pump for water heating in subtropical Hong Kong," Applied Energy, Elsevier, vol. 87(2), pages 643-649, February.
    5. Omojaro, Peter & Breitkopf, Cornelia, 2013. "Direct expansion solar assisted heat pumps: A review of applications and recent research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 33-45.
    6. Zhang, Xingxing & Zhao, Xudong & Shen, Jingchun & Xu, Jihuan & Yu, Xiaotong, 2014. "Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system," Applied Energy, Elsevier, vol. 114(C), pages 335-352.
    7. Zhai, X.Q. & Wang, R.Z. & Dai, Y.J. & Wu, J.Y. & Ma, Q., 2008. "Experience on integration of solar thermal technologies with green buildings," Renewable Energy, Elsevier, vol. 33(8), pages 1904-1910.
    8. Deng, Yuechao & Wang, Wei & Zhao, Yaohua & Yao, Liang & Wang, Xinyue, 2013. "Experimental study of the performance for a novel kind of MHPA-FPC solar water heater," Applied Energy, Elsevier, vol. 112(C), pages 719-726.
    9. Zhang, Xingxing & Zhao, Xudong & Xu, Jihuan & Yu, Xiaotong, 2013. "Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system," Applied Energy, Elsevier, vol. 102(C), pages 1229-1245.
    10. Rittidech, S. & Donmaung, A. & Kumsombut, K., 2009. "Experimental study of the performance of a circular tube solar collector with closed-loop oscillating heat-pipe with check valve (CLOHP/CV)," Renewable Energy, Elsevier, vol. 34(10), pages 2234-2238.
    11. Wang, R.Z. & Zhai, X.Q., 2010. "Development of solar thermal technologies in China," Energy, Elsevier, vol. 35(11), pages 4407-4416.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xingxing & Shen, Jingchun & Xu, Peng & Zhao, Xudong & Xu, Ying, 2014. "Socio-economic performance of a novel solar photovoltaic/loop-heat-pipe heat pump water heating system in three different climatic regions," Applied Energy, Elsevier, vol. 135(C), pages 20-34.
    2. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    3. He, Wei & Hong, Xiaoqiang & Luo, Bingqing & Chen, Hongbing & Ji, Jie, 2016. "CFD and comparative study on the dual-function solar collectors with and without tile-shaped covers in water heating mode," Renewable Energy, Elsevier, vol. 86(C), pages 1205-1214.
    4. Wang, Zhangyuan & Yang, Wansheng & Qiu, Feng & Zhang, Xiangmei & Zhao, Xudong, 2015. "Solar water heating: From theory, application, marketing and research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 68-84.
    5. Zhang, Xingxing & Zhao, Xudong & Shen, Jingchun & Xu, Jihuan & Yu, Xiaotong, 2014. "Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system," Applied Energy, Elsevier, vol. 114(C), pages 335-352.
    6. Zhou, Jinzhi & Zhao, Xudong & Ma, Xiaoli & Qiu, Zhongzhu & Ji, Jie & Du, Zhenyu & Yu, Min, 2016. "Experimental investigation of a solar driven direct-expansion heat pump system employing the novel PV/micro-channels-evaporator modules," Applied Energy, Elsevier, vol. 178(C), pages 484-495.
    7. Qu, Jian & Wang, Qian, 2013. "Experimental study on the thermal performance of vertical closed-loop oscillating heat pipes and correlation modeling," Applied Energy, Elsevier, vol. 112(C), pages 1154-1160.
    8. Han, Xiaohong & Wang, Xuehui & Zheng, Haoce & Xu, Xiangguo & Chen, Guangming, 2016. "Review of the development of pulsating heat pipe for heat dissipation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 692-709.
    9. Buker, Mahmut Sami & Riffat, Saffa B., 2016. "Solar assisted heat pump systems for low temperature water heating applications: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 399-413.
    10. Lv, Xiaolong & Yan, Gang & Yu, Jianlin, 2015. "Solar-assisted auto-cascade heat pump cycle with zeotropic mixture R32/R290 for small water heaters," Renewable Energy, Elsevier, vol. 76(C), pages 167-172.
    11. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    12. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal, 2018. "Mathematical Thermal Modelling of a Direct-Expansion Solar-Assisted Heat Pump Using Multi-Objective Optimization Based on the Energy Demand," Energies, MDPI, vol. 11(7), pages 1-27, July.
    13. Mohamed, Elamin & Riffat, Saffa & Omer, Siddig & Zeinelabdein, Rami, 2019. "A comprehensive investigation of using mutual air and water heating in multi-functional DX-SAMHP for moderate cold climate," Renewable Energy, Elsevier, vol. 130(C), pages 582-600.
    14. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    15. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    16. Nizetic, S. & Coko, D. & Marasovic, I., 2014. "Experimental study on a hybrid energy system with small- and medium-scale applications for mild climates," Energy, Elsevier, vol. 75(C), pages 379-389.
    17. Fine, J.P. & Friedman, J. & Dworkin, S.B., 2015. "Transient analysis of a photovoltaic thermal heat input process with thermal storage," Applied Energy, Elsevier, vol. 160(C), pages 308-320.
    18. Chen, Hongbing & Zhang, Lei & Jie, Pengfei & Xiong, Yaxuan & Xu, Peng & Zhai, Huixing, 2017. "Performance study of heat-pipe solar photovoltaic/thermal heat pump system," Applied Energy, Elsevier, vol. 190(C), pages 960-980.
    19. Jouhara, Hussam & Ezzuddin, Hatem, 2013. "Thermal performance characteristics of a wraparound loop heat pipe (WLHP) charged with R134A," Energy, Elsevier, vol. 61(C), pages 128-138.
    20. Zhou, Zhihua & Zhang, Zhiming & Zuo, Jian & Huang, Ke & Zhang, Liying, 2015. "Phase change materials for solar thermal energy storage in residential buildings in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 692-703.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:146:y:2015:i:c:p:371-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.