IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v91y2016icp11-20.html
   My bibliography  Save this item

Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lopes, Francis M. & Conceição, Ricardo & Fasquelle, Thomas & Silva, Hugo G. & Salgado, Rui & Canhoto, Paulo & Collares-Pereira, Manuel, 2020. "Predicted direct solar radiation (ECMWF) for optimized operational strategies of linear focus parabolic-trough systems," Renewable Energy, Elsevier, vol. 151(C), pages 378-391.
  2. Andrea Salimbeni & Mario Porru & Luca Massidda & Alfonso Damiano, 2020. "A Forecasting-Based Control Algorithm for Improving Energy Managment in High Concentrator Photovoltaic Power Plant Integrated with Energy Storage Systems," Energies, MDPI, vol. 13(18), pages 1-20, September.
  3. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
  4. Huva, Robert & Verbois, Hadrien & Walsh, Wilfred, 2020. "Comparisons of next-day solar forecasting for Singapore using 3DVAR and 4DVAR data assimilation approaches with the WRF model," Renewable Energy, Elsevier, vol. 147(P1), pages 663-671.
  5. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
  6. Pape, Christian, 2018. "The impact of intraday markets on the market value of flexibility — Decomposing effects on profile and the imbalance costs," Energy Economics, Elsevier, vol. 76(C), pages 186-201.
  7. Nguyen, Thi Ngoc & Müsgens, Felix, 2022. "What drives the accuracy of PV output forecasts?," Applied Energy, Elsevier, vol. 323(C).
  8. Mohsen Beigi & Hossein Beigi Harchegani & Mehdi Torki & Mohammad Kaveh & Mariusz Szymanek & Esmail Khalife & Jacek Dziwulski, 2022. "Forecasting of Power Output of a PVPS Based on Meteorological Data Using RNN Approaches," Sustainability, MDPI, vol. 14(5), pages 1-12, March.
  9. Costa, Suellen C.S. & Diniz, Antonia Sonia A.C. & Kazmerski, Lawrence L., 2018. "Solar energy dust and soiling R&D progress: Literature review update for 2016," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2504-2536.
  10. Yajing Gao & Jing Zhu & Huaxin Cheng & Fushen Xue & Qing Xie & Peng Li, 2016. "Study of Short-Term Photovoltaic Power Forecast Based on Error Calibration under Typical Climate Categories," Energies, MDPI, vol. 9(7), pages 1-15, July.
  11. Dadkhah, Mojtaba & Jahangoshai Rezaee, Mustafa & Zare Chavoshi, Ahmad, 2018. "Short-term power output forecasting of hourly operation in power plant based on climate factors and effects of wind direction and wind speed," Energy, Elsevier, vol. 148(C), pages 775-788.
  12. Kushwaha, Vishal & Pindoriya, Naran M., 2019. "A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast," Renewable Energy, Elsevier, vol. 140(C), pages 124-139.
  13. Shang, Chuanfu & Wei, Pengcheng, 2018. "Enhanced support vector regression based forecast engine to predict solar power output," Renewable Energy, Elsevier, vol. 127(C), pages 269-283.
  14. Nikodinoska, Dragana & Käso, Mathias & Müsgens, Felix, 2022. "Solar and wind power generation forecasts using elastic net in time-varying forecast combinations," Applied Energy, Elsevier, vol. 306(PA).
  15. Gandoman, Foad H. & Abdel Aleem, Shady H.E. & Omar, Noshin & Ahmadi, Abdollah & Alenezi, Faisal Q., 2018. "Short-term solar power forecasting considering cloud coverage and ambient temperature variation effects," Renewable Energy, Elsevier, vol. 123(C), pages 793-805.
  16. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
  17. Mehdi Seyedmahmoudian & Elmira Jamei & Gokul Sidarth Thirunavukkarasu & Tey Kok Soon & Michael Mortimer & Ben Horan & Alex Stojcevski & Saad Mekhilef, 2018. "Short-Term Forecasting of the Output Power of a Building-Integrated Photovoltaic System Using a Metaheuristic Approach," Energies, MDPI, vol. 11(5), pages 1-23, May.
  18. Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
  19. Christian Pape, 2017. "The impact of intraday markets on the market value of flexibility–Decomposing effects on profile and the imbalance costs," EWL Working Papers 1711, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Dec 2017.
  20. Han, Chanok & Vinel, Alexander, 2022. "Reducing forecasting error by optimally pooling wind energy generation sources through portfolio optimization," Energy, Elsevier, vol. 239(PB).
  21. Kaur, Amanpreet & Nonnenmacher, Lukas & Coimbra, Carlos F.M., 2016. "Net load forecasting for high renewable energy penetration grids," Energy, Elsevier, vol. 114(C), pages 1073-1084.
  22. Francis M. Lopes & Ricardo Conceição & Hugo G. Silva & Thomas Fasquelle & Rui Salgado & Paulo Canhoto & Manuel Collares-Pereira, 2019. "Short-Term Forecasts of DNI from an Integrated Forecasting System (ECMWF) for Optimized Operational Strategies of a Central Receiver System," Energies, MDPI, vol. 12(7), pages 1-18, April.
  23. Blonsky, Michael & McKenna, Killian & Maguire, Jeff & Vincent, Tyrone, 2022. "Home energy management under realistic and uncertain conditions: A comparison of heuristic, deterministic, and stochastic control methods," Applied Energy, Elsevier, vol. 325(C).
  24. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
  25. Rodríguez, Fermín & Fleetwood, Alice & Galarza, Ainhoa & Fontán, Luis, 2018. "Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control," Renewable Energy, Elsevier, vol. 126(C), pages 855-864.
  26. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
  27. Zhao, Wei & Zhang, Haoran & Zheng, Jianqin & Dai, Yuanhao & Huang, Liqiao & Shang, Wenlong & Liang, Yongtu, 2021. "A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants," Energy, Elsevier, vol. 223(C).
  28. Gandhi, Oktoviano & Zhang, Wenjie & Kumar, Dhivya Sampath & Rodríguez-Gallegos, Carlos D. & Yagli, Gokhan Mert & Yang, Dazhi & Reindl, Thomas & Srinivasan, Dipti, 2024. "The value of solar forecasts and the cost of their errors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  29. Ming Meng & Chenge Song, 2020. "Daily Photovoltaic Power Generation Forecasting Model Based on Random Forest Algorithm for North China in Winter," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
  30. Malin Lachmann & Jaime Maldonado & Wiebke Bergmann & Francesca Jung & Markus Weber & Christof Büskens, 2020. "Self-Learning Data-Based Models as Basis of a Universally Applicable Energy Management System," Energies, MDPI, vol. 13(8), pages 1-42, April.
  31. Medine Colak & Mehmet Yesilbudak & Ramazan Bayindir, 2020. "Daily Photovoltaic Power Prediction Enhanced by Hybrid GWO-MLP, ALO-MLP and WOA-MLP Models Using Meteorological Information," Energies, MDPI, vol. 13(4), pages 1-19, February.
  32. Polasek, Tomas & Čadík, Martin, 2023. "Predicting photovoltaic power production using high-uncertainty weather forecasts," Applied Energy, Elsevier, vol. 339(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.