IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v90y2016icp336-351.html
   My bibliography  Save this article

Multibody modeling of varying complexity for dynamic analysis of large-scale wind turbines

Author

Listed:
  • Jin, Xin
  • Li, Lang
  • Ju, Wenbin
  • Zhang, Zhaolong
  • Yang, Xiangang

Abstract

Guaranteeing a robust and reliable wind turbine design under increasingly demanding conditions requires an expert insight into dynamic loading effects of the complete turbine and its subsystems. Traditionally, aeroelastic codes are used to model the wind turbine, where the gearbox is reduced to a few or only one degree of freedom, as bring limitations to describe the dynamic behavior in detail. In this paper, the gearbox dynamic behavior is assessed by means of three multibody models of varying complexity, which are assessed based on modal and dynamic behaviors. This work shows that the fully flexible multibody dynamic model can better reflect the operating condition of the wind turbine. However, due to high calculation precision, the fully flexible multibody dynamic model consumes much times. Therefore, an artificial neural network method is proposed for the prediction of wind turbine dynamic behaviors. The results show that combination of the multibody method and the artificial neural network can reduce the simulation runtime, guaranteeing the accuracy meantime. Therefore, it is of great significance in engineering practice.

Suggested Citation

  • Jin, Xin & Li, Lang & Ju, Wenbin & Zhang, Zhaolong & Yang, Xiangang, 2016. "Multibody modeling of varying complexity for dynamic analysis of large-scale wind turbines," Renewable Energy, Elsevier, vol. 90(C), pages 336-351.
  • Handle: RePEc:eee:renene:v:90:y:2016:i:c:p:336-351
    DOI: 10.1016/j.renene.2016.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116300039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Anca D. & Michalke, Gabriele, 2007. "Fault ride-through capability of DFIG wind turbines," Renewable Energy, Elsevier, vol. 32(9), pages 1594-1610.
    2. Helsen, Jan & Vanhollebeke, Frederik & Marrant, Ben & Vandepitte, Dirk & Desmet, Wim, 2011. "Multibody modelling of varying complexity for modal behaviour analysis of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 36(11), pages 3098-3113.
    3. Boukhezzar, B. & Lupu, L. & Siguerdidjane, H. & Hand, M., 2007. "Multivariable control strategy for variable speed, variable pitch wind turbines," Renewable Energy, Elsevier, vol. 32(8), pages 1273-1287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shuaishuai & Nejad, Amir R. & Bachynski, Erin E. & Moan, Torgeir, 2020. "Effects of bedplate flexibility on drivetrain dynamics: Case study of a 10 MW spar type floating wind turbine," Renewable Energy, Elsevier, vol. 161(C), pages 808-824.
    2. W. Dheelibun Remigius & Anand Natarajan, 2022. "A review of wind turbine drivetrain loads and load effects for fixed and floating wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    3. Liu, Xianzeng & Yang, Yuhu & Zhang, Jun, 2018. "Resultant vibration signal model based fault diagnosis of a single stage planetary gear train with an incipient tooth crack on the sun gear," Renewable Energy, Elsevier, vol. 122(C), pages 65-79.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helsen, Jan & Vanhollebeke, Frederik & Marrant, Ben & Vandepitte, Dirk & Desmet, Wim, 2011. "Multibody modelling of varying complexity for modal behaviour analysis of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 36(11), pages 3098-3113.
    2. Mérida, Jován & Aguilar, Luis T. & Dávila, Jorge, 2014. "Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization," Renewable Energy, Elsevier, vol. 71(C), pages 715-728.
    3. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    4. Liu, Hongwei & Zhang, Pengpeng & Gu, Yajing & Shu, Yongdong & Song, Jiajun & Lin, Yonggang & Li, Wei, 2022. "Dynamics analysis of the power train of 650 kW horizontal-axis tidal current turbine," Renewable Energy, Elsevier, vol. 194(C), pages 51-67.
    5. Yolanda Vidal & Leonardo Acho & Ningsu Luo & Mauricio Zapateiro & Francesc Pozo, 2012. "Power Control Design for Variable-Speed Wind Turbines," Energies, MDPI, vol. 5(8), pages 1-18, August.
    6. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    7. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    8. Eissa (SIEEE), M.M., 2015. "Protection techniques with renewable resources and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1645-1667.
    9. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    10. Nikita Tomin, 2023. "Robust Reinforcement Learning-Based Multiple Inputs and Multiple Outputs Controller for Wind Turbines," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    11. He, Guolin & Ding, Kang & Wu, Xiaomeng & Yang, Xiaoqing, 2019. "Dynamics modeling and vibration modulation signal analysis of wind turbine planetary gearbox with a floating sun gear," Renewable Energy, Elsevier, vol. 139(C), pages 718-729.
    12. Damdoum, Amel & Slama-Belkhodja, Ilhem & Pietrzak-David, Maria & Debbou, Mustapha, 2016. "Low voltage ride-through strategies for doubly fed induction machine pumped storage system under grid faults," Renewable Energy, Elsevier, vol. 95(C), pages 248-262.
    13. Chen, Jiahao & Hu, Zhiqiang & Liu, Geliang & Wan, Decheng, 2019. "Coupled aero-hydro-servo-elastic methods for floating wind turbines," Renewable Energy, Elsevier, vol. 130(C), pages 139-153.
    14. Han, Chenlu & Nagamune, Ryozo, 2020. "Platform position control of floating wind turbines using aerodynamic force," Renewable Energy, Elsevier, vol. 151(C), pages 896-907.
    15. Guerine, A. & El Hami, A. & Walha, L. & Fakhfakh, T. & Haddar, M., 2017. "Dynamic response of wind turbine gear system with uncertain-but-bounded parameters using interval analysis method," Renewable Energy, Elsevier, vol. 113(C), pages 679-687.
    16. Papaefthymiou, Stefanos V. & Lakiotis, Vasileios G. & Margaris, Ioannis D. & Papathanassiou, Stavros A., 2015. "Dynamic analysis of island systems with wind-pumped-storage hybrid power stations," Renewable Energy, Elsevier, vol. 74(C), pages 544-554.
    17. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    18. Golnary, Farshad & Moradi, Hamed, 2022. "Identification of the dynamics of the drivetrain and estimating its unknown parts in a large scale wind turbine," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 50-69.
    19. Amer Saeed, M. & Mehroz Khan, Hafiz & Ashraf, Arslan & Aftab Qureshi, Suhail, 2018. "Analyzing effectiveness of LVRT techniques for DFIG wind turbine system and implementation of hybrid combination with control schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2487-2501.
    20. Gao, Richie & Gao, Zhiwei, 2016. "Pitch control for wind turbine systems using optimization, estimation and compensation," Renewable Energy, Elsevier, vol. 91(C), pages 501-515.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:90:y:2016:i:c:p:336-351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.