Effects of bedplate flexibility on drivetrain dynamics: Case study of a 10 MW spar type floating wind turbine
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.07.148
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Helsen, Jan & Vanhollebeke, Frederik & Marrant, Ben & Vandepitte, Dirk & Desmet, Wim, 2011. "Multibody modelling of varying complexity for modal behaviour analysis of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 36(11), pages 3098-3113.
- Li, Zhanwei & Wen, Binrong & Wei, Kexiang & Yang, Wenxian & Peng, Zhike & Zhang, Wenming, 2020. "Flexible dynamic modeling and analysis of drive train for Offshore Floating Wind Turbine," Renewable Energy, Elsevier, vol. 145(C), pages 1292-1305.
- Jin, Xin & Li, Lang & Ju, Wenbin & Zhang, Zhaolong & Yang, Xiangang, 2016. "Multibody modeling of varying complexity for dynamic analysis of large-scale wind turbines," Renewable Energy, Elsevier, vol. 90(C), pages 336-351.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ahmet Selim Pehlivan & Mahmut Faruk Aksit & Kemalettin Erbatur, 2021. "Fatigue Analysis Design Approach, Manufacturing and Implementation of a 500 kW Wind Turbine Main Load Frame," Energies, MDPI, vol. 14(12), pages 1-15, June.
- Wang, Shuaishuai & Moan, Torgeir & Jiang, Zhiyu, 2022. "Influence of variability and uncertainty of wind and waves on fatigue damage of a floating wind turbine drivetrain," Renewable Energy, Elsevier, vol. 181(C), pages 870-897.
- Wang, Shuaishuai & Moan, Torgeir & Nejad, Amir R., 2021. "A comparative study of fully coupled and de-coupled methods on dynamic behaviour of floating wind turbine drivetrains," Renewable Energy, Elsevier, vol. 179(C), pages 1618-1635.
- W. Dheelibun Remigius & Anand Natarajan, 2022. "A review of wind turbine drivetrain loads and load effects for fixed and floating wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
- Zhanpu Xue & Hao Zhang & Yunguang Ji, 2023. "Dynamic Response of a Flexible Multi-Body in Large Wind Turbines: A Review," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- W. Dheelibun Remigius & Anand Natarajan, 2022. "A review of wind turbine drivetrain loads and load effects for fixed and floating wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
- Liu, Hongwei & Zhang, Pengpeng & Gu, Yajing & Shu, Yongdong & Song, Jiajun & Lin, Yonggang & Li, Wei, 2022. "Dynamics analysis of the power train of 650 kW horizontal-axis tidal current turbine," Renewable Energy, Elsevier, vol. 194(C), pages 51-67.
- Liu, Xianzeng & Yang, Yuhu & Zhang, Jun, 2018. "Resultant vibration signal model based fault diagnosis of a single stage planetary gear train with an incipient tooth crack on the sun gear," Renewable Energy, Elsevier, vol. 122(C), pages 65-79.
- He, Guolin & Ding, Kang & Wu, Xiaomeng & Yang, Xiaoqing, 2019. "Dynamics modeling and vibration modulation signal analysis of wind turbine planetary gearbox with a floating sun gear," Renewable Energy, Elsevier, vol. 139(C), pages 718-729.
- Wang, Cheng, 2024. "Study on dynamic performance and optimal design for differential gear train in wind turbine gearbox," Renewable Energy, Elsevier, vol. 221(C).
- Guerine, A. & El Hami, A. & Walha, L. & Fakhfakh, T. & Haddar, M., 2017. "Dynamic response of wind turbine gear system with uncertain-but-bounded parameters using interval analysis method," Renewable Energy, Elsevier, vol. 113(C), pages 679-687.
- He, Jiao & Jin, Xin & Xie, S.Y. & Cao, Le & Lin, Yifan & Wang, Ning, 2019. "Multi-body dynamics modeling and TMD optimization based on the improved AFSA for floating wind turbines," Renewable Energy, Elsevier, vol. 141(C), pages 305-321.
- Jin, Xin & Li, Lang & Ju, Wenbin & Zhang, Zhaolong & Yang, Xiangang, 2016. "Multibody modeling of varying complexity for dynamic analysis of large-scale wind turbines," Renewable Energy, Elsevier, vol. 90(C), pages 336-351.
- Wang, Bohan & Deng, Ziwei & Zhang, Baocheng, 2022. "Simulation of a novel wind–wave hybrid power generation system with hydraulic transmission," Energy, Elsevier, vol. 238(PB).
- Wei, Sha & Zhao, Jingshan & Han, Qinkai & Chu, Fulei, 2015. "Dynamic response analysis on torsional vibrations of wind turbine geared transmission system with uncertainty," Renewable Energy, Elsevier, vol. 78(C), pages 60-67.
- Li, Y. & Castro, A.M. & Martin, J.E. & Sinokrot, T. & Prescott, W. & Carrica, P.M., 2017. "Coupled computational fluid dynamics/multibody dynamics method for wind turbine aero-servo-elastic simulation including drivetrain dynamics," Renewable Energy, Elsevier, vol. 101(C), pages 1037-1051.
- Borg, Michael & Collu, Maurizio & Kolios, Athanasios, 2014. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part II: Mooring line and structural dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1226-1234.
- Wang, Shuaishuai & Moan, Torgeir & Jiang, Zhiyu, 2022. "Influence of variability and uncertainty of wind and waves on fatigue damage of a floating wind turbine drivetrain," Renewable Energy, Elsevier, vol. 181(C), pages 870-897.
- Yin, Xiu-xing & Lin, Yong-gang & Li, Wei & Ye, Hang-ye & Gu, Ya-jing & Liu, Hong-wei, 2015. "Reproduction of five degree-of-freedom loads for wind turbine using equispaced electro-hydraulic actuators," Renewable Energy, Elsevier, vol. 83(C), pages 626-637.
- Cheng Yang & Jun Jia & Ke He & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Ming Wu & Haoyang Cui, 2023. "Comprehensive Analysis and Evaluation of the Operation and Maintenance of Offshore Wind Power Systems: A Survey," Energies, MDPI, vol. 16(14), pages 1-39, July.
- Wang, Shuaishuai & Moan, Torgeir & Nejad, Amir R., 2021. "A comparative study of fully coupled and de-coupled methods on dynamic behaviour of floating wind turbine drivetrains," Renewable Energy, Elsevier, vol. 179(C), pages 1618-1635.
More about this item
Keywords
Spar type floating wind turbine; Drivetrain; Bedplate flexibility; Drivetrain fatigue damage;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:808-824. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.