IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v89y2016icp526-542.html
   My bibliography  Save this article

A generic transient PV system model for power quality studies

Author

Listed:
  • Patsalides, Minas
  • Efthymiou, Venizelos
  • Stavrou, Andreas
  • Georghiou, George E.

Abstract

Currently, the deployment of PV technology in local distribution grids is usually done in an unplanned way without performing the required studies and this may induce power quality issues as penetration increases. The utilisation of accurate simulation models is therefore of great importance in an attempt to assess the real consequences of localised PV production. A generic PV system model for transient studies, the parameters of which can be tuned using transient data is proposed. The model is tuned and validated using transient data obtained from a detailed PV system circuit topology. The main novelty of this work lies in the fact that the proposed model can be tuned in order to represent accurately the dynamic behaviour of PV systems for both balanced and unbalanced conditions. Harmonics are also incorporated into the model to highlight its capability for use in complete power quality studies. The developed model is used along with the detailed PV system model to assess the voltage transient response of a distribution grid busbar. Finally, the transient behaviour of the distribution grid busbar having different grid impedance values is also evaluated utilising the proposed model. The expected and observed results are compared by means of the Theil Inequality coefficient depicting good agreement.

Suggested Citation

  • Patsalides, Minas & Efthymiou, Venizelos & Stavrou, Andreas & Georghiou, George E., 2016. "A generic transient PV system model for power quality studies," Renewable Energy, Elsevier, vol. 89(C), pages 526-542.
  • Handle: RePEc:eee:renene:v:89:y:2016:i:c:p:526-542
    DOI: 10.1016/j.renene.2015.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115305073
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Menti, Anthoula & Zacharias, Thomas & Milias-Argitis, John, 2011. "Harmonic distortion assessment for a single-phase grid-connected photovoltaic system," Renewable Energy, Elsevier, vol. 36(1), pages 360-368.
    2. Fekete, Kresimir & Klaic, Zvonimir & Majdandzic, Ljubomir, 2012. "Expansion of the residential photovoltaic systems and its harmonic impact on the distribution grid," Renewable Energy, Elsevier, vol. 43(C), pages 140-148.
    3. Kakosimos, Panagiotis E. & Kladas, Antonios G., 2011. "Implementation of photovoltaic array MPPT through fixed step predictive control technique," Renewable Energy, Elsevier, vol. 36(9), pages 2508-2514.
    4. Tonkoski, Reinaldo & Lopes, Luiz A.C., 2011. "Impact of active power curtailment on overvoltage prevention and energy production of PV inverters connected to low voltage residential feeders," Renewable Energy, Elsevier, vol. 36(12), pages 3566-3574.
    5. Hassaine, L. & Olias, E. & Quintero, J. & Haddadi, M., 2009. "Digital power factor control and reactive power regulation for grid-connected photovoltaic inverter," Renewable Energy, Elsevier, vol. 34(1), pages 315-321.
    6. Acquaviva, V. & Poggi, P. & Muselli, M. & Louche, A., 2000. "Grid-connected rooftop PV systems for reducing voltage drops at the end of the feeder—a case study in Corsica Island," Energy, Elsevier, vol. 25(8), pages 741-756.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minas Patsalides & Christina N. Papadimitriou & Venizelos Efthymiou, 2021. "Low Inertia Systems Frequency Variation Reduction with Fine-Tuned Smart Energy Controllers," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    2. Kongrit Mansiri & Sukruedee Sukchai & Chatchai Sirisamphanwong, 2018. "Fuzzy Control for Smart PV-Battery System Management to Stabilize Grid Voltage of 22 kV Distribution System in Thailand," Energies, MDPI, vol. 11(7), pages 1-19, July.
    3. Etxegarai, Agurtzane & Eguia, Pablo & Torres, Esther & Buigues, Garikoitz & Iturregi, Araitz, 2017. "Current procedures and practices on grid code compliance verification of renewable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 191-202.
    4. Bakdi, Azzeddine & Bounoua, Wahiba & Mekhilef, Saad & Halabi, Laith M., 2019. "Nonparametric Kullback-divergence-PCA for intelligent mismatch detection and power quality monitoring in grid-connected rooftop PV," Energy, Elsevier, vol. 189(C).
    5. Jorge Luiz Moreira Pereira & Adonis Ferreira Raiol Leal & Gabriel Oliveira de Almeida & Maria Emília de Lima Tostes, 2021. "Harmonic Effects Due to the High Penetration of Photovoltaic Generation into a Distribution System," Energies, MDPI, vol. 14(13), pages 1-25, July.
    6. Colin Levis & Cathal O’Loughlin & Terence O’Donnell & Martin Hill, 2019. "An Enhanced Two-Stage Grid-Connected Linear Parameter Varying Photovoltaic System Model for Frequency Support Strategy Evaluation," Energies, MDPI, vol. 12(24), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chatterjee, Aditi & Mohanty, Kanungobarada & Kommukuri, Vinaya Sagar & Thakre, Kishor, 2017. "Design and experimental investigation of digital model predictive current controller for single phase grid integrated photovoltaic systems," Renewable Energy, Elsevier, vol. 108(C), pages 438-448.
    2. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    3. Nattapan Thanomsat & Boonyang Plangklang & Hideaki Ohgaki, 2018. "Analysis of Ferroresonance Phenomenon in 22 kV Distribution System with a Photovoltaic Source by PSCAD/EMTDC," Energies, MDPI, vol. 11(7), pages 1-24, July.
    4. Stinner, Sebastian & Schlösser, Tim & Huchtemann, Kristian & Müller, Dirk & Monti, Antonello, 2017. "Primary energy evaluation of heat pumps considering dynamic boundary conditions in the energy system," Energy, Elsevier, vol. 138(C), pages 60-78.
    5. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    6. Ranaweera, Iromi & Midtgård, Ole-Morten & Korpås, Magnus, 2017. "Distributed control scheme for residential battery energy storage units coupled with PV systems," Renewable Energy, Elsevier, vol. 113(C), pages 1099-1110.
    7. Nasiri, Reza & Radan, Ahmad, 2011. "Adaptive decoupled control of 4-leg voltage-source inverters for standalone photovoltaic systems: Adjusting transient state response," Renewable Energy, Elsevier, vol. 36(10), pages 2733-2741.
    8. Guerrero-Rodríguez, N.F. & Rey-Boué, Alexis B. & Herrero-de Lucas, Luis C. & Martinez-Rodrigo, Fernando, 2015. "Control and synchronization algorithms for a grid-connected photovoltaic system under harmonic distortions, frequency variations and unbalances," Renewable Energy, Elsevier, vol. 80(C), pages 380-395.
    9. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
    10. Cook, Tyson & Shaver, Lee & Arbaje, Paul, 2018. "Modeling constraints to distributed generation solar photovoltaic capacity installation in the US Midwest," Applied Energy, Elsevier, vol. 210(C), pages 1037-1050.
    11. Allard, Stéphane & Debusschere, Vincent & Mima, Silvana & Quoc, Tuan Tran & Hadjsaid, Nouredine & Criqui, Patrick, 2020. "Considering distribution grids and local flexibilities in the prospective development of the European power system by 2050," Applied Energy, Elsevier, vol. 270(C).
    12. Jung, Jaesung & Onen, Ahmet & Russell, Kevin & Broadwater, Robert P., 2015. "Local steady-state and quasi steady-state impact studies of high photovoltaic generation penetration in power distribution circuits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 569-583.
    13. Bendib, Boualem & Belmili, Hocine & Krim, Fateh, 2015. "A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 637-648.
    14. Vargas Gil, Gloria Milena & Bittencourt Aguiar Cunha, Rafael & Giuseppe Di Santo, Silvio & Machado Monaro, Renato & Fragoso Costa, Fabiano & Sguarezi Filho, Alfeu J., 2020. "Photovoltaic energy in South America: Current state and grid regulation for large-scale and distributed photovoltaic systems," Renewable Energy, Elsevier, vol. 162(C), pages 1307-1320.
    15. Jamal, Taskin & Urmee, Tania & Calais, Martina & Shafiullah, GM & Carter, Craig, 2017. "Technical challenges of PV deployment into remote Australian electricity networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1309-1325.
    16. Barote, L. & Marinescu, C., 2014. "Software method for harmonic content evaluation of grid connected converters from distributed power generation systems," Energy, Elsevier, vol. 66(C), pages 401-412.
    17. Fekete, Kresimir & Klaic, Zvonimir & Majdandzic, Ljubomir, 2012. "Expansion of the residential photovoltaic systems and its harmonic impact on the distribution grid," Renewable Energy, Elsevier, vol. 43(C), pages 140-148.
    18. Kolhe, Mohan Lal & Rasul, M.J.M.A., 2020. "3-Phase grid-connected building integrated photovoltaic system with reactive power control capability," Renewable Energy, Elsevier, vol. 154(C), pages 1065-1075.
    19. Matej Žnidarec & Zvonimir Klaić & Damir Šljivac & Boris Dumnić, 2019. "Harmonic Distortion Prediction Model of a Grid-Tie Photovoltaic Inverter Using an Artificial Neural Network," Energies, MDPI, vol. 12(5), pages 1-19, February.
    20. Rampinelli, Giuliano A. & Gasparin, Fabiano P. & Bühler, Alexandre J. & Krenzinger, Arno & Chenlo Romero, Faustino, 2015. "Assessment and mathematical modeling of energy quality parameters of grid connected photovoltaic inverters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 133-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:89:y:2016:i:c:p:526-542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.