IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v87y2016ip1p744-753.html
   My bibliography  Save this article

Comparative testing of energy yields from micro-algal biomass cultures processed via anaerobic digestion

Author

Listed:
  • Roberts, Keiron P.
  • Heaven, Sonia
  • Banks, Charles J.

Abstract

Although digestion of micro-algal biomass was first suggested in the 1950s, there is still only limited information available for assessment of its potential. The research examined six laboratory-grown marine and freshwater micro-algae and two samples from large-scale cultivation systems. Biomass composition was characterised to allow prediction of potentially available energy using the Buswell equation, with calorific values as a benchmark for energy recovery. Biochemical methane potential tests were analysed using a pseudo-parallel first order model to estimate kinetic coefficients and proportions of readily-biodegradable carbon. Chemical composition was used to assess potential interferences from nitrogen and sulphur components. Volatile solids (VS) conversion to methane showed a broad range, from 0.161 to 0.435 L CH4 g−1 VS; while conversion of calorific value ranged from 26.4 to 79.2%. Methane productivity of laboratory-grown species was estimated from growth rate, measured by changes in optical density in batch culture, and biomass yield based on an assumed harvested solids content. Volumetric productivity was 0.04–0.08 L CH4 L−1 culture day−1, the highest from the marine species Thalassiosira pseudonana. Estimated methane productivity of the large-scale raceway was lower at 0.01 L CH4 L−1 day−1. The approach used offers a means of screening for methane productivity per unit of cultivation under standard conditions.

Suggested Citation

  • Roberts, Keiron P. & Heaven, Sonia & Banks, Charles J., 2016. "Comparative testing of energy yields from micro-algal biomass cultures processed via anaerobic digestion," Renewable Energy, Elsevier, vol. 87(P1), pages 744-753.
  • Handle: RePEc:eee:renene:v:87:y:2016:i:p1:p:744-753
    DOI: 10.1016/j.renene.2015.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115304286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frigon, Jean-Claude & Matteau-Lebrun, Frédérique & Hamani Abdou, Rekia & McGinn, Patrick J. & O’Leary, Stephen J.B. & Guiot, Serge R., 2013. "Screening microalgae strains for their productivity in methane following anaerobic digestion," Applied Energy, Elsevier, vol. 108(C), pages 100-107.
    2. Caporgno, M.P. & Trobajo, R. & Caiola, N. & Ibáñez, C. & Fabregat, A. & Bengoa, C., 2015. "Biogas production from sewage sludge and microalgae co-digestion under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 75(C), pages 374-380.
    3. Rao, M. S. & Singh, S. P. & Singh, A. K. & Sodha, M. S., 2000. "Bioenergy conversion studies of the organic fraction of MSW: assessment of ultimate bioenergy production potential of municipal garbage," Applied Energy, Elsevier, vol. 66(1), pages 75-87, May.
    4. Zamalloa, Carlos & Boon, Nico & Verstraete, Willy, 2012. "Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions," Applied Energy, Elsevier, vol. 92(C), pages 733-738.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abimbola, Tobi & Christodoulatos, Christos & Lawal, Adeniyi, 2024. "Anaerobic digestion of whole cells and post-extracted algae residues of Scenedesmus obliquus in immobilized batch reactor," Renewable Energy, Elsevier, vol. 221(C).
    2. Simone Bagatella & Riccardo Ciapponi & Elena Ficara & Nicola Frison & Stefano Turri, 2022. "Production and Characterization of Polyhydroxyalkanoates from Wastewater via Mixed Microbial Cultures and Microalgae," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    3. Małgorzata Hawrot-Paw & Adam Koniuszy & Patryk Ratomski & Magdalena Sąsiadek & Andrzej Gawlik, 2023. "Biogas Production from Arthrospira platensis Biomass," Energies, MDPI, vol. 16(10), pages 1-12, May.
    4. Hallenbeck, P.C. & Grogger, M. & Mraz, M. & Veverka, D., 2016. "Solar biofuels production with microalgae," Applied Energy, Elsevier, vol. 179(C), pages 136-145.
    5. John J. Milledge & Birthe V. Nielsen & Supattra Maneein & Patricia J. Harvey, 2019. "A Brief Review of Anaerobic Digestion of Algae for Bioenergy," Energies, MDPI, vol. 12(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Thorin, Eva & Olsson, Jesper & Schwede, Sebastian & Nehrenheim, Emma, 2018. "Co-digestion of sewage sludge and microalgae – Biogas production investigations," Applied Energy, Elsevier, vol. 227(C), pages 64-72.
    3. Mariana Abreu & Luís Silva & Belina Ribeiro & Alice Ferreira & Luís Alves & Susana M. Paixão & Luísa Gouveia & Patrícia Moura & Florbela Carvalheiro & Luís C. Duarte & Ana Luisa Fernando & Alberto Rei, 2022. "Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review," Energies, MDPI, vol. 15(12), pages 1-68, June.
    4. Chia, Shir Reen & Ong, Hwai Chyuan & Chew, Kit Wayne & Show, Pau Loke & Phang, Siew-Moi & Ling, Tau Chuan & Nagarajan, Dillirani & Lee, Duu-Jong & Chang, Jo-Shu, 2018. "Sustainable approaches for algae utilisation in bioenergy production," Renewable Energy, Elsevier, vol. 129(PB), pages 838-852.
    5. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    6. Neves, Viviane T. de C. & Sales, Emerson Andrade & Perelo, Louisa W., 2016. "Influence of lipid extraction methods as pre-treatment of microalgal biomass for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 160-165.
    7. Baena-Moreno, Francisco M. & Sebastia-Saez, Daniel & Pastor-Pérez, Laura & Reina, Tomas Ramirez, 2021. "Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Lübken, Manfred & Koch, Konrad & Gehring, Tito & Horn, Harald & Wichern, Marc, 2015. "Parameter estimation and long-term process simulation of a biogas reactor operated under trace elements limitation," Applied Energy, Elsevier, vol. 142(C), pages 352-360.
    9. Chandra, R. & Vijay, V.K. & Subbarao, P.M.V. & Khura, T.K., 2012. "Production of methane from anaerobic digestion of jatropha and pongamia oil cakes," Applied Energy, Elsevier, vol. 93(C), pages 148-159.
    10. Hassan, Muhammad & Zhao, Chao & Ding, Weimin, 2020. "Enhanced methane generation and biodegradation efficiencies of goose manure by thermal-sonication pretreatment and organic loading management in CSTR," Energy, Elsevier, vol. 198(C).
    11. Xu, Changqing & Shi, Wenxiao & Hong, Jinglan & Zhang, Fangfang & Chen, Wei, 2015. "Life cycle assessment of food waste-based biogas generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 169-177.
    12. Córdova, Olivia & Santis, Julissa & Ruiz-Fillipi, Gonzalo & Zuñiga, María Elvira & Fermoso, Fernando G. & Chamy, Rolando, 2018. "Microalgae digestive pretreatment for increasing biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2806-2813.
    13. Wieczorek, Nils & Kucuker, Mehmet Ali & Kuchta, Kerstin, 2014. "Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process," Applied Energy, Elsevier, vol. 132(C), pages 108-117.
    14. Mohammadi, Ali & Omid, Mahmoud, 2010. "Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran," Applied Energy, Elsevier, vol. 87(1), pages 191-196, January.
    15. Merrylin Jayaseelan & Mohamed Usman & Adishkumar Somanathan & Sivashanmugam Palani & Gunasekaran Muniappan & Rajesh Banu Jeyakumar, 2021. "Microalgal Production of Biofuels Integrated with Wastewater Treatment," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    16. Solé-Bundó, Maria & Passos, Fabiana & Romero-Güiza, Maycoll S. & Ferrer, Ivet & Astals, Sergi, 2019. "Co-digestion strategies to enhance microalgae anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 471-482.
    17. Xu, Xianzhen & Gu, Xiaoguang & Wang, Zhongyang & Shatner, William & Wang, Zhenjun, 2019. "Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 65-82.
    18. Heydari, Ali & Askarzadeh, Alireza, 2016. "Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept," Applied Energy, Elsevier, vol. 165(C), pages 601-611.
    19. German Smetana & Ewa Neczaj & Anna Grosser, 2021. "Biomethane Potential of Selected Organic Waste and Sewage Sludge at Different Temperature Regimes," Energies, MDPI, vol. 14(14), pages 1-18, July.
    20. Małgorzata Hawrot-Paw & Adam Koniuszy & Patryk Ratomski & Magdalena Sąsiadek & Andrzej Gawlik, 2023. "Biogas Production from Arthrospira platensis Biomass," Energies, MDPI, vol. 16(10), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:87:y:2016:i:p1:p:744-753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.