IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v49y2015icp169-177.html
   My bibliography  Save this article

Life cycle assessment of food waste-based biogas generation

Author

Listed:
  • Xu, Changqing
  • Shi, Wenxiao
  • Hong, Jinglan
  • Zhang, Fangfang
  • Chen, Wei

Abstract

Life cycle assessment was performed by using the ReCiPe model to estimate the environmental effects of three food waste (FW)-based biogas generation scenarios. Uncertainty analysis was also conducted to confirm and add credibility to the study. Results showed that the potential impacts of human toxicity, freshwater eutrophication, marine ecotoxicity, and fossil depletion had dominant contributions to the overall environmental impact. Electricity consumption during anaerobic digestion (AD) and the transportation of raw materials during landfill stage exhibited high potential impacts. The FW to landfill scenario with and without energy recovery had the highest environmental impact. Moreover, uncertainty analysis indicated that landfill was unsuitable for treating FW. Increasing biogas generation capacity, improving electricity generation efficiency, optimizing the energy structure of China, and decreasing electricity consumption during the AD stage are effective ways for reducing the adverse effects on the environment.

Suggested Citation

  • Xu, Changqing & Shi, Wenxiao & Hong, Jinglan & Zhang, Fangfang & Chen, Wei, 2015. "Life cycle assessment of food waste-based biogas generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 169-177.
  • Handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:169-177
    DOI: 10.1016/j.rser.2015.04.164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115004347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.04.164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ebner, Jacqueline & Babbitt, Callie & Winer, Martin & Hilton, Brian & Williamson, Anahita, 2014. "Life cycle greenhouse gas (GHG) impacts of a novel process for converting food waste to ethanol and co-products," Applied Energy, Elsevier, vol. 130(C), pages 86-93.
    2. Caporgno, M.P. & Trobajo, R. & Caiola, N. & Ibáñez, C. & Fabregat, A. & Bengoa, C., 2015. "Biogas production from sewage sludge and microalgae co-digestion under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 75(C), pages 374-380.
    3. Edgar G. Hertwich & Thomas E. McKone & William S. Pease, 2000. "A Systematic Uncertainty Analysis of an Evaluative Fate and Exposure Model," Risk Analysis, John Wiley & Sons, vol. 20(4), pages 439-454, August.
    4. Cui, Xiaowei & Hong, Jinglan & Gao, Mingming, 2012. "Environmental impact assessment of three coal-based electricity generation scenarios in China," Energy, Elsevier, vol. 45(1), pages 952-959.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Shi, Wenxiao & Lin, Chen & Chen, Wei & Hong, Jinglan & Chang, Jingcai & Dong, Yong & Zhang, Yanlu, 2017. "Environmental effect of current desulfurization technology on fly dust emission in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1-9.
    4. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    5. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
    6. Hosseini, Seyed Mohsen & Kanagaraj, N. & Sadeghi, Shahrbanoo & Yousefi, Hossein, 2022. "Midpoint and endpoint impacts of electricity generation by renewable and nonrenewable technologies: A case study of Alberta, Canada," Renewable Energy, Elsevier, vol. 197(C), pages 22-39.
    7. Zhai, Yijie & Bai, Yueyang & Wu, Zhen & Hong, Jinglan & Shen, Xiaoxu & Xie, Fei & Li, Xiangzhi, 2022. "Grain self-sufficiency versus environmental stress: An integration of system dynamics and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Lam, Chor-Man & Leng, Ling & Chen, Pi-Cheng & Lee, Po-Heng & Hsu, Shu-Chien, 2017. "Eco-efficiency analysis of non-potable water systems in domestic buildings," Applied Energy, Elsevier, vol. 202(C), pages 293-307.
    9. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    10. Chen, Wei & Geng, Yong & Hong, Jinglan & Kua, Harn Wei & Xu, Changqing & Yu, Nan, 2017. "Life cycle assessment of antibiotic mycelial residues management in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 830-838.
    11. Meng, Fanran & Dornau, Aritha & Mcqueen Mason, Simon J. & Thomas, Gavin H. & Conradie, Alex & McKechnie, Jon, 2021. "Bioethanol from autoclaved municipal solid waste: Assessment of environmental and financial viability under policy contexts," Applied Energy, Elsevier, vol. 298(C).
    12. Fayyazbakhsh, Ahmad & Pirouzfar, Vahid, 2017. "Comprehensive overview on diesel additives to reduce emissions, enhance fuel properties and improve engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 891-901.
    13. Cai, Yanpeng & Yue, Wencong & Xu, Linyu & Yang, Zhifeng & Rong, Qiangqiang, 2016. "Sustainable urban water resources management considering life-cycle environmental impacts of water utilization under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 21-40.
    14. Roberts, Keiron P. & Heaven, Sonia & Banks, Charles J., 2016. "Comparative testing of energy yields from micro-algal biomass cultures processed via anaerobic digestion," Renewable Energy, Elsevier, vol. 87(P1), pages 744-753.
    15. Aikaterini Konti & Dimitris Kekos & Diomi Mamma, 2020. "Life Cycle Analysis of the Bioethanol Production from Food Waste—A Review," Energies, MDPI, vol. 13(19), pages 1-14, October.
    16. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    17. Solé-Bundó, Maria & Passos, Fabiana & Romero-Güiza, Maycoll S. & Ferrer, Ivet & Astals, Sergi, 2019. "Co-digestion strategies to enhance microalgae anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 471-482.
    18. Yachen Xie & Jiaguo Qi & Rui Zhang & Xiaomiao Jiao & Gabriela Shirkey & Shihua Ren, 2022. "Toward a Carbon-Neutral State: A Carbon–Energy–Water Nexus Perspective of China’s Coal Power Industry," Energies, MDPI, vol. 15(12), pages 1-24, June.
    19. Zhao, Ning & You, Fengqi, 2021. "Food-energy-water-waste nexus systems optimization for New York State under the COVID-19 pandemic to alleviate health and environmental concerns," Applied Energy, Elsevier, vol. 282(PA).
    20. Zhang, Quanguo & Hu, Jianjun & Lee, Duu-Jong, 2016. "Biogas from anaerobic digestion processes: Research updates," Renewable Energy, Elsevier, vol. 98(C), pages 108-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:169-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.