IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3704-d776257.html
   My bibliography  Save this article

Production and Characterization of Polyhydroxyalkanoates from Wastewater via Mixed Microbial Cultures and Microalgae

Author

Listed:
  • Simone Bagatella

    (Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy)

  • Riccardo Ciapponi

    (Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy)

  • Elena Ficara

    (Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy)

  • Nicola Frison

    (Dipartimento di Biotecnologie, Università degli Studi di Verona, Via S. Francesco 22, 37129 Verona, Italy)

  • Stefano Turri

    (Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy)

Abstract

In the context of circular economy and sustainable production of materials, this project investigated the feasibility of producing sustainable polyhydroxyalkanoates (PHA) from microalgae and sludge used in the treatment of municipal wastewater. The overall process was studied looking at the main steps: microalgae production, fermentation of the biomass, production and characterization of the PHAs. It was possible to obtain blends of hydroxybutyrate-hydroxyvalerate copolymers with high molecular weights and different compositions depending on the nature of the feedstock (mixed volatile fatty acids). In some cases, almost completely amorphous PHA materials were obtained, suggesting a potential diversification of uses and applications.

Suggested Citation

  • Simone Bagatella & Riccardo Ciapponi & Elena Ficara & Nicola Frison & Stefano Turri, 2022. "Production and Characterization of Polyhydroxyalkanoates from Wastewater via Mixed Microbial Cultures and Microalgae," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3704-:d:776257
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3704/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3704/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberts, Keiron P. & Heaven, Sonia & Banks, Charles J., 2016. "Comparative testing of energy yields from micro-algal biomass cultures processed via anaerobic digestion," Renewable Energy, Elsevier, vol. 87(P1), pages 744-753.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soulayma Hassan & Tien Ngo & Andrew S. Ball, 2024. "Valorisation of Sugarcane Bagasse for the Sustainable Production of Polyhydroxyalkanoates," Sustainability, MDPI, vol. 16(5), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John J. Milledge & Birthe V. Nielsen & Supattra Maneein & Patricia J. Harvey, 2019. "A Brief Review of Anaerobic Digestion of Algae for Bioenergy," Energies, MDPI, vol. 12(6), pages 1-22, March.
    2. Hallenbeck, P.C. & Grogger, M. & Mraz, M. & Veverka, D., 2016. "Solar biofuels production with microalgae," Applied Energy, Elsevier, vol. 179(C), pages 136-145.
    3. Małgorzata Hawrot-Paw & Adam Koniuszy & Patryk Ratomski & Magdalena Sąsiadek & Andrzej Gawlik, 2023. "Biogas Production from Arthrospira platensis Biomass," Energies, MDPI, vol. 16(10), pages 1-12, May.
    4. Abimbola, Tobi & Christodoulatos, Christos & Lawal, Adeniyi, 2024. "Anaerobic digestion of whole cells and post-extracted algae residues of Scenedesmus obliquus in immobilized batch reactor," Renewable Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3704-:d:776257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.