IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp922-929.html
   My bibliography  Save this article

Synthesis and properties of novel proton exchange membranes based on sulfonated polyethersulfone and N-phthaloyl chitosan blends for DMFC applications

Author

Listed:
  • Muthumeenal, A.
  • Neelakandan, S.
  • Kanagaraj, P.
  • Nagendran, A.

Abstract

Chitosan is modified by phthaloylation using an excess of phthalic anhydride at 130 °C and blended with the sulfonated polyethersulfone (SPES) to produce composite blend membranes. In particular the introduction of the phthaloyl group into the chitosan matrix increases its solubility in organic solvent, film formability, flexibility, low methanol permeability and with suitable ion conductivity. SPES and N-phthaloyl chitosan (NPHCs) blend membranes with various compositions were prepared and detailed investigation on water uptake, proton conductivity and methanol permeability has been conducted for its suitability in fuel cell environments. Methanol permeability studies envisaged that NPHCs blend membranes are impervious to methanol. The thermograms display the good thermal stabilities of blend membranes than Nafion-117. Relatively high selectivity parameter values of these membranes indicated their greater advantages over Nafion-117 membrane for targeting on fuel cell applications, especially in direct methanol fuel cell (DMFC) environments.

Suggested Citation

  • Muthumeenal, A. & Neelakandan, S. & Kanagaraj, P. & Nagendran, A., 2016. "Synthesis and properties of novel proton exchange membranes based on sulfonated polyethersulfone and N-phthaloyl chitosan blends for DMFC applications," Renewable Energy, Elsevier, vol. 86(C), pages 922-929.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:922-929
    DOI: 10.1016/j.renene.2015.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115302974
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neelakandan, S. & Kanagaraj, P. & Nagendran, A. & Rana, D. & Matsuura, T. & Muthumeenal, A., 2015. "Enhancing proton conduction of sulfonated poly (phenylene ether ether sulfone) membrane by charged surface modifying macromolecules for H2/O2 fuel cells," Renewable Energy, Elsevier, vol. 78(C), pages 306-313.
    2. Hasani-Sadrabadi, Mohammad Mahdi & Dashtimoghadam, Erfan & Ghaffarian, Seyed Reza & Hasani Sadrabadi, Mohammad Hossein & Heidari, Mahdi & Moaddel, Homayoun, 2010. "Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone)," Renewable Energy, Elsevier, vol. 35(1), pages 226-231.
    3. Chun, Jeong Hwan & Kim, Sang Gon & Lee, Ji Young & Hyeon, Dong Hun & Chun, Byung-Hee & Kim, Sung Hyun & Park, Ki Tae, 2013. "Crosslinked sulfonated poly(arylene ether sulfone)/silica hybrid membranes for high temperature proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 51(C), pages 22-28.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kusworo, Tutuk Djoko & Widayat, Widayat & Utomo, Dani Puji & Pratama, Yulius Harmawan Setya & Arianti, Riska Anindisa Vira, 2020. "Performance evaluation of modified nanohybrid membrane polyethersulfone-nano ZnO (PES-nano ZnO) using three combination effect of PVP, irradiation of ultraviolet and thermal for biodiesel purification," Renewable Energy, Elsevier, vol. 148(C), pages 935-945.
    2. Nagar, Harsha & Aniya, Vineet & Mondal, Prasenjit, 2020. "High proton conductivity dual modified ionic crosslink membrane for fuel cell application at low humidity condition with molecular dynamics simulations," Renewable Energy, Elsevier, vol. 160(C), pages 1036-1047.
    3. Uma Devi, A. & Muthumeenal, A. & Sabarathinam, R.M. & Nagendran, A., 2017. "Fabrication and electrochemical properties of SPVdF-co-HFP/SPES blend proton exchange membranes for direct methanol fuel cells," Renewable Energy, Elsevier, vol. 102(PA), pages 258-265.
    4. Abdelkareem, Mohammad Ali & Allagui, Anis & Sayed, Enas Taha & El Haj Assad, M. & Said, Zafar & Elsaid, Khaled, 2019. "Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells," Renewable Energy, Elsevier, vol. 131(C), pages 563-584.
    5. Eman A. El Desouky & Emad A. Soliman & Hessa H. Al-Rasheed & Ayman El-Faham & M. A. Abu-Saied, 2023. "Novel Proton Exchange Membranes Based on Sulfonated Poly(acrylonitrile- co -glycidyl methacrylate)/Poly(vinyl chloride) Composite," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
    6. Simari, C. & Lo Vecchio, C. & Baglio, V. & Nicotera, I., 2020. "Sulfonated polyethersulfone/polyetheretherketone blend as high performing and cost-effective electrolyte membrane for direct methanol fuel cells," Renewable Energy, Elsevier, vol. 159(C), pages 336-345.
    7. Shirvani, Bita & Rahimi, Masoud & Zinadini, Sirus, 2024. "Exploring the potential of anti-bacterial and conductive ZnO–Al2O3/SPES proton exchange membrane applied in MFC for sustainable energy generation and sugar beet industry effluent treatment," Renewable Energy, Elsevier, vol. 231(C).
    8. Ingabire, Providence Buregeya & Pan, Xueting & Haragirimana, Alphonse & Li, Na & Hu, Zhaoxia & Chen, Shouwen, 2020. "Improved hydroxide conductivity and performance of nanocomposite membrane derived on quaternized polymers incorporated by titanium dioxide modified graphitic carbon nitride for fuel cells," Renewable Energy, Elsevier, vol. 152(C), pages 590-600.
    9. Muthumeenal, A. & Pethaiah, S. Sundar & Nagendran, A., 2016. "Investigation of SPES as PEM for hydrogen production through electrochemical reforming of aqueous methanol," Renewable Energy, Elsevier, vol. 91(C), pages 75-82.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neelakandan, S. & Kanagaraj, P. & Nagendran, A. & Rana, D. & Matsuura, T. & Muthumeenal, A., 2015. "Enhancing proton conduction of sulfonated poly (phenylene ether ether sulfone) membrane by charged surface modifying macromolecules for H2/O2 fuel cells," Renewable Energy, Elsevier, vol. 78(C), pages 306-313.
    2. Ingabire, Providence Buregeya & Pan, Xueting & Haragirimana, Alphonse & Li, Na & Hu, Zhaoxia & Chen, Shouwen, 2020. "Improved hydroxide conductivity and performance of nanocomposite membrane derived on quaternized polymers incorporated by titanium dioxide modified graphitic carbon nitride for fuel cells," Renewable Energy, Elsevier, vol. 152(C), pages 590-600.
    3. Uma Devi, A. & Muthumeenal, A. & Sabarathinam, R.M. & Nagendran, A., 2017. "Fabrication and electrochemical properties of SPVdF-co-HFP/SPES blend proton exchange membranes for direct methanol fuel cells," Renewable Energy, Elsevier, vol. 102(PA), pages 258-265.
    4. Nagar, Harsha & Sahu, Nivedita & Basava Rao, V.V. & Sridhar, S., 2020. "Surface modification of sulfonated polyethersulfone membrane with polyaniline nanoparticles for application in direct methanol fuel cell," Renewable Energy, Elsevier, vol. 146(C), pages 1262-1277.
    5. Muthumeenal, A. & Pethaiah, S. Sundar & Nagendran, A., 2016. "Investigation of SPES as PEM for hydrogen production through electrochemical reforming of aqueous methanol," Renewable Energy, Elsevier, vol. 91(C), pages 75-82.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:922-929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.