IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v78y2015icp306-313.html
   My bibliography  Save this article

Enhancing proton conduction of sulfonated poly (phenylene ether ether sulfone) membrane by charged surface modifying macromolecules for H2/O2 fuel cells

Author

Listed:
  • Neelakandan, S.
  • Kanagaraj, P.
  • Nagendran, A.
  • Rana, D.
  • Matsuura, T.
  • Muthumeenal, A.

Abstract

Blend membranes comprising sulfonated poly (phenylene ether ether sulfone) (SPEES) - charged surface modifying macromolecules (cSMMs) were fabricated as an alternative proton exchange membrane (PEM) for H2/O2 fuel cell applications. Prepared membranes were characterized by determining the ion exchange capacity, water uptake, proton conductivity, oxidative stability and dimensional stability. The water uptake of SPEES/cSMM blended membrane was found to be higher than that of the pristine SPEES and the Nafion 117 membranes. Proton conductivity of the blend membranes is in the range of 10−3 to 10−2 S/cm. The conductivity of the prepared membranes increases with temperature, in particular, the poly (propylene glycol) – hydroxy benzene sulfonate (PPG-HBS) blended SPEES membrane shows rise in conductivities from 1.61 × 10−2 S/cm (25 °C) to 5.22 × 10−2 S/cm (80 °C). Surface morphology of the membranes was investigated by tapping mode atomic force microscopy (AFM), which indicates that the nodule size and surface roughness are increased by the incorporation of cSMM into the SPEES matrix. Surface modified blended membranes exhibited excellent thermal stability and acceptable dimension stability in 80 °C, which implies that the SPEES/cSMM blended membranes are promising materials for PEMFC application.

Suggested Citation

  • Neelakandan, S. & Kanagaraj, P. & Nagendran, A. & Rana, D. & Matsuura, T. & Muthumeenal, A., 2015. "Enhancing proton conduction of sulfonated poly (phenylene ether ether sulfone) membrane by charged surface modifying macromolecules for H2/O2 fuel cells," Renewable Energy, Elsevier, vol. 78(C), pages 306-313.
  • Handle: RePEc:eee:renene:v:78:y:2015:i:c:p:306-313
    DOI: 10.1016/j.renene.2015.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115000087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hasani-Sadrabadi, Mohammad Mahdi & Dashtimoghadam, Erfan & Ghaffarian, Seyed Reza & Hasani Sadrabadi, Mohammad Hossein & Heidari, Mahdi & Moaddel, Homayoun, 2010. "Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone)," Renewable Energy, Elsevier, vol. 35(1), pages 226-231.
    2. Papadopoulos, Panagiotis N. & Kandyla, Maria & Kourtza, Paraskevi & Papadopoulos, Theofilos A. & Papagiannis, Grigoris K., 2014. "Parametric analysis of the steady state and dynamic performance of proton exchange membrane fuel cell models," Renewable Energy, Elsevier, vol. 71(C), pages 23-31.
    3. Chun, Jeong Hwan & Kim, Sang Gon & Lee, Ji Young & Hyeon, Dong Hun & Chun, Byung-Hee & Kim, Sung Hyun & Park, Ki Tae, 2013. "Crosslinked sulfonated poly(arylene ether sulfone)/silica hybrid membranes for high temperature proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 51(C), pages 22-28.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ingabire, Providence Buregeya & Pan, Xueting & Haragirimana, Alphonse & Li, Na & Hu, Zhaoxia & Chen, Shouwen, 2020. "Improved hydroxide conductivity and performance of nanocomposite membrane derived on quaternized polymers incorporated by titanium dioxide modified graphitic carbon nitride for fuel cells," Renewable Energy, Elsevier, vol. 152(C), pages 590-600.
    2. Muthumeenal, A. & Neelakandan, S. & Kanagaraj, P. & Nagendran, A., 2016. "Synthesis and properties of novel proton exchange membranes based on sulfonated polyethersulfone and N-phthaloyl chitosan blends for DMFC applications," Renewable Energy, Elsevier, vol. 86(C), pages 922-929.
    3. Muthumeenal, A. & Pethaiah, S. Sundar & Nagendran, A., 2016. "Investigation of SPES as PEM for hydrogen production through electrochemical reforming of aqueous methanol," Renewable Energy, Elsevier, vol. 91(C), pages 75-82.
    4. Uma Devi, A. & Muthumeenal, A. & Sabarathinam, R.M. & Nagendran, A., 2017. "Fabrication and electrochemical properties of SPVdF-co-HFP/SPES blend proton exchange membranes for direct methanol fuel cells," Renewable Energy, Elsevier, vol. 102(PA), pages 258-265.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muthumeenal, A. & Neelakandan, S. & Kanagaraj, P. & Nagendran, A., 2016. "Synthesis and properties of novel proton exchange membranes based on sulfonated polyethersulfone and N-phthaloyl chitosan blends for DMFC applications," Renewable Energy, Elsevier, vol. 86(C), pages 922-929.
    2. Nagar, Harsha & Sahu, Nivedita & Basava Rao, V.V. & Sridhar, S., 2020. "Surface modification of sulfonated polyethersulfone membrane with polyaniline nanoparticles for application in direct methanol fuel cell," Renewable Energy, Elsevier, vol. 146(C), pages 1262-1277.
    3. Banaja Mohanty & Rajvikram Madurai Elavarasan & Hany M. Hasanien & Elangovan Devaraj & Rania A. Turky & Rishi Pugazhendhi, 2022. "Parameters Identification of Proton Exchange Membrane Fuel Cell Model Based on the Lightning Search Algorithm," Energies, MDPI, vol. 15(21), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:78:y:2015:i:c:p:306-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.